

AP® Computer Science AB
2005 Scoring Guidelines

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000
high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid,
enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced
Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is
embodied in all of its programs, services, activities, and concerns.

Copyright © 2005 by College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP,
AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board.
Admitted Class Evaluation Service, CollegeEd, Connect to college success, MyRoad, SAT Professional Development, SAT
Readiness Program, and Setting the Cornerstones are trademarks owned by the College Entrance Examination Board.
PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship
Corporation. Other products and services may be trademarks of their respective owners. Permission to use copyrighted College
Board materials may be requested online at: http://www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.

AP® COMPUTER SCIENCE AB
2005 SCORING GUIDELINES

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

2

2005 AB Question 1: Salmon

Part A: nextLocation 5 points

 +1/2 test if age < matureAge

 +1/2 return super.nextLocation() if juvenile
 (no credit for reimplementation)

 +1 check neighboring locations
 +1/2 correctly call emptyNeighbors() or neighborsOf

ex: environment().neighborsOf(<location>) (must also call
 isEmpty)

 +1/2 reference all (N) neighbors (must not remove the location behind)

 +2 compare neighbor distance with current distance
 +1/2 get current location (lose this if reference inaccessible field)
 +1/2 attempt to identify closer location
 +1 correctly compare distances from present location using distanceHome

(may not (re)implement distanceHome, must potentially test all possibilities)

 +1 return value
 +1/2 return any empty neighbor that is closer to home
 +1/2 return current location if none closer

Part B: act 4 points

+1 distinguish juvenile from mature
+1/2 test if age < matureAge
+1/2 juvenile actions or mature actions, based on decision

+1/2 juvenile action: move()

 +2 mature actions
+1/2 test if location().equals(homeLocation) (lose this if reference inaccessible

field)
+1/2 call breed() if and only if at homeLocation
+1/2 call die() if and only if breed() succeeds
+1/2 call move() in context of homeLocation test

Note: Methods breed(), die()and move() may not be reimplemented, but equals() can be
replaced by distanceHome() or compareTo() if done correctly.

+1/2 increment age (after processing)

AP® COMPUTER SCIENCE AB
2005 SCORING GUIDELINES

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

3

2005 AB Question 2: Postal Codes

Part A: efficiency 1 point

 +1/2 (1)O for getCitiesForCode

 +1/2 (1)O for addCityCodePair

Part B: design 4 points

 +1 data structure

+1/2 supports storing city names (list or set OK)
+1/2 supports storing city codes mapping

 +1 initialization and declaration

+1/2 attempt (new Map() OK)
+1/2 correct (for data structures provided) (must be private)

+1 explanation

+1/2 describe how cities are stored
+1/2 describe how codes are stored and mapped

 +1 addCityCodePair update

+1/2 describe how cities are updated
+1/2 describe how codes are updated (mapped)

Part C: getCodesForCity efficiency 1 point

 +1 (log)O N or better

+1/2 data structure supports (log)O N
+1/2 explanation (must identify big-Oh for structure used)

Part D: printAllCities 3 points

 +1 iterate and print all cities

+1/2 attempt to iterate/traverse and print the cities
+1/2 prints all, no dups
 (System.out.println(cityToCodeMap.keySet()); is OK)

+1 cities printed in alphabetical order

+1 ()O N efficiency (must iterate over data structure that contains cities)

AP® COMPUTER SCIENCE AB
2005 SCORING GUIDELINES

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

4

2005 AB Question 3: Successor Nodes

Part A: verifyParentLinks 5 points

 +1/2 return true if empty

 +1/2 check parent link of root node is null

 +1 1/2 check parent link of at least one non-root node
 +1/2 attempt (call to getParent is enough)
 +1 correct relationship test

 +1 1/2 traversal
 +1/2 attempt (recursion or iteration)
 +1/2 traverse to bottom of tree somewhere
 +1/2 traverse every node

 +1 return correct boolean in all cases for non-empty trees

Part B: successor 4 points

 +1 1/2 identify and handle case where successor is below t:
 +1/2 attempt (must test if t.getRight() != null and
 do something with the right subtree OR
 put in another data structure and look for successor of t)
 +1 return minimum node from right subtree,
 e.g., return minNode(t.getRight())

 +1 1/2 handle case where successor is above t:
 +1/2 attempt traversal (loop) above t
 e.g., up to parent OR down from root to t OR
 put in another data structure and look for successor of t
 +1 return successor node

+1 in the case where there’s no successor, return null

Note: Must accept any correct solution, regardless of efficiency (e.g., can do inorder traversal, store nodes in a

list, search for t, then get next entry).

Note: equals method not redefined in TreeNode, so equivalent to == as long as the invoking object is

not null

AP® COMPUTER SCIENCE AB
2005 SCORING GUIDELINES

Copyright © 2005 by College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

5

2005 AB Question 4: Expand Aliases

Part A: appendSetToQueue 3 points

 +2 iterate over set
 +1 attempt (must access set members)
 +1 correct

+1 each item added to end of q

Part B: expandAlias 6 points

 +1 instantiate set
 +1/2 attempt (new Set() OK)
 +1/2 correct

 +1/2 create queue*

 +1/2 enqueue alias or its expansion

+1 access all items in queue
 +1/2 attempt (must access queue in body)
 +1/2 correct

 +1/2 get next alias/address (in context of loop)

 +2 process alias/address (in context of loop)
 +1/2 test whether alias or address
 +1/2 expand alias
 +1/2 store expansion
 +1/2 store address in set

 +1/2 return a set of addresses

*Note: Alternative data structures for queue are acceptable.

Usage: No penalty for use of “enque” for “enqueue” or “deque” for “dequeue”

}no loop, no credit

2005 General Usage

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once on a part when the same usage is correct two or more times can be regarded as an oversight and not
penalized. If the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Non-penalized Errors Minor Errors (1/2 point) Major Errors (1 point)

case discrepancies misspelled/ confused identifier (e.g., len read new values for parameters or
 for length or left() for getLeft()) or instance variables
variable not declared when others are (prompts part of this point)
declared in some part of question no variables declared
 extraneous code which causes side-effect,
missing “new” for constructor call once, new never used for constructor calls for example, information written to output.
when others are present in question
 use interface or class name instead of
default constructor called without parens void method returns a value variable identifier, for example
for example, new Fish; Simulation.step() instead of sim.step()
 modifying a constant (final)
missing { } where indentation clearly aMethod(obj) instead of obj.aMethod()
conveys intent
 use equals or compareTo method on use of object reference that is incorrect,
obj.method instead of obj.method() primitives, for example for example, use of f.move() inside
 int x; …x.equals(val) method of Fish class
loop variables used outside loop
 use value 0 for null use private data or method when not accessible
[r,c], (r)(c)or(r,c)instead of [r][c]
 use values 0, 1 for false, true destruction of data structure (e.g. by using root
= instead of == (and vice versa) reference to a TreeNode for traversal of the tree;
 this is often handled in the rubric)
missing () around if/while conditions use of itr.next() more than once as
 same value within loop use class name in place of super either in
length - size confusion for array, String, constructor or in method call
and ArrayList, with or without () use keyword as identifier

missing downcast from collection or map [] – get confusion

unnecessary construction of object whose assignment dyslexia, for example,
reference is reassigned, for example x + 3 = y; for y = x + 3;
Direction dir = new Direction();
dir = f.Direction; super(method()) instead of
 super.method()
private qualifier on local variable
 formal parameter syntax (with type) in
use “,” instead of “+” for String in method call, e.g., a = method(int x)
System.out.print(str1, str2))

missing ;s or missing public

extraneous code with no side-effect, for
example a check for precondition

automatic conversion of Integer to int
and vice-versa (this is legal in Java 1.5,
called auto(un)boxing)

Note: Case discrepancies for identifiers fall under the "not penalized"
category. If two identifiers differ only in capitalization, the reader may
use context to differentiate between them. For example, if a student
declares "Fish fish;", then uses Fish.move() instead of fish.move(), the
context allows for the reader to assume the object instead of the class. If
context is not clear, say if the two identifiers have the same type, then a
one point penalty must be applied.

Workshop Exam Materials
Canonical Solutions

2005 AP® Computer Science AB

Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 1

PART A:

protected Location nextLocation()
{
 if (age < matureAge)
 {
 return super.nextLocation();
 }
 else
 {
 Location currentLoc = location();
 int currentDistance = distanceHome(currentLoc);

 ArrayList possLocs = emptyNeighbors();
 for (int i = 0; i < possLocs.size(); i++)
 {
 if (distanceHome((Location)possLocs.get(i)) < currentDistance)
 {
 return (Location)possLocs.get(i);
 }
 }
 return currentLoc;
 }
}

PART B:

public void act()
{
 if (! isInEnv())
 {
 return;
 }

 if (age >= matureAge && location().equals(homeLocation))
 {
 if (breed())
 {
 die();
 }
 }
 else
 {
 move();
 }

 age++;
}

Workshop Exam Materials
Canonical Solutions

2005 AP® Computer Science AB

Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 2

PART A:

getCitiesForCode: (1)O

addCityCodePair: (1)O

PART B:

private Map cityToCodeMap;

public PostalCodeDB()
{
 . . .
 cityToCodeMap = new TreeMap();
}

cityToCodeMap will have cities for keys,
and sets of codes for that city as corresponding
value.

addCityCodePair will need to similarly
update cityToCodeMap (adding to the set
of codes for that city, adding a city entry to the
map if first occurrence).

private Map cityToCodeMap;
private Set cities;

public PostalCodeDB()
{
 . . .
 cityToCodeMap = new HashMap();
 cities = new TreeSet();
}

cityToCodeMap will have cities for keys,
and sets of codes for that city as corresponding
value. cities will store the city names.

addCityCodePair will need to similarly
update cityToCodeMap (adding to the set
of codes for that city, adding a city entry to the
map if first occurrence). For each new city, its
name must be entered into cities.

PART C:

Since cityToCodeMap is a TreeMap,
the get method is (log)O N .

Since cityToCodeMap is a HashMap,
the get method is (1)O .

PART D:

public void printAllCities()
{
 Set cities = cityToCodeMap.keySet();
 Iterator iter = cities.iterator();
 while (iter.hasNext())
 {
 System.out.println(iter.next());
 }
}

OR

public void printAllCities()
{
 Set cities = cityToCodeMap.keySet();
 System.out.println(cities);
}

public void printAllCities()
{
 Iterator iter = cities.iterator();
 while (iter.hasNext())
 {
 System.out.println(iter.next());
 }
}

OR

public void printAllCities()
{
 System.out.println(cities);
}

Workshop Exam Materials
Canonical Solutions

2005 AP® Computer Science AB

Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 3

PART A:

private boolean verifyParentLinks()
{
 return verifyParent(root, null);
}

private boolean verifyParent(TreeNode t, TreeNode parent)
{
 return (t == null ||
 (t.getParent() == parent && verifyParent(t.getLeft(), t) &&
 verifyParent(t.getRight(), t)));
}

OR

private boolean verifyParentLinks()
{
 if (root == null)
 return true;
 if (root.getParent()!= null)
 return false;
 return verifyChildren (root);
}

private boolean verifyChildren(TreeNode parent)
{
 if (parent == null)
 return true;
 if (parent.getLeft() != null && parent.getLeft().getParent() != parent)
 return false;
 if (parent.getRight() != null && parent.getRight().getParent() != parent)
 return false;
 return verifyChildren(parent.getLeft()) && verifyChildren(parent.getRight());
}

PART B:

private TreeNode successor(TreeNode t)
{
 if (maxNode(root) == t)
 return null;

 if (t.getRight() != null)
 return minNode(t.getRight());

 while (t.getParent() != null && t.getParent().getRight() == t)
 t = t.getParent();
 return t.getParent();
}

Workshop Exam Materials
Canonical Solutions

2005 AP® Computer Science AB

Copyright © 2005 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4

PART A:

private void appendSetToQueue(Set items, Queue q)
{
 Iterator iter = items.iterator();
 while (iter.hasNext())
 {
 q.enqueue(iter.next());
 }
}

PART B:

public Set expandAlias(String alias)
{
 Set expanded = new HashSet();

 Queue partial = new ListQueue();
 partial.enqueue(alias);
 while (!partial.empty())
 {
 String front = (String)partial.dequeue();
 if (addressBook.containsKey(front))
 {
 appendSetToQueue((Set)addressBook.get(front), partial);
 }
 else
 {
 expanded.add(front);
 }
 }
 return expanded;
}

