Question 1

An object moving along a curve in the xy-plane has position $(x(t), y(t))$ at time $t \geq 0$ with

$$\frac{dx}{dt} = 12t - 3t^2 \quad \text{and} \quad \frac{dy}{dt} = \ln\left(1 + (t - 4)^4\right).$$

At time $t = 0$, the object is at position $(-13, 5)$. At time $t = 2$, the object is at point P with x-coordinate 3.

(a) Find the acceleration vector at time $t = 2$ and the speed at time $t = 2$.

(b) Find the y-coordinate of P.

(c) Write an equation for the line tangent to the curve at P.

(d) For what value of t, if any, is the object at rest? Explain your reasoning.

Solution

(a) \(x''(2) = 0, \ y''(2) = -\frac{32}{17} = -1.882\)

\[a(2) = \langle 0, -1.882 \rangle\]

Speed \(= \sqrt{12^2 + (\ln(17))^2} = 12.329 \text{ or } 12.330\)

(b) \(y(t) = y(0) + \int_0^t \ln\left(1 + (u - 4)^4\right) \, du\)

\[y(2) = 5 + \int_0^2 \ln\left(1 + (u - 4)^4\right) \, du = 13.671\]

(c) At $t = 2$, slope \(= \frac{dy}{dx} = \frac{\ln(17)}{12} = 0.236\)

\[y - 13.671 = 0.236(x - 3)\]

(d) \(x'(t) = 0 \text{ if } t = 0, 4\)

\[y'(t) = 0 \text{ if } t = 4\]

\[t = 4\]
A water tank at Camp Newton holds 1200 gallons of water at time $t = 0$. During the time interval $0 \leq t \leq 18$ hours, water is pumped into the tank at the rate

$W(t) = 95\sqrt{t} \sin^2 \left(\frac{t}{6} \right) \text{ gallons per hour.}$

During the same time interval, water is removed from the tank at the rate

$R(t) = 275\sin^2 \left(\frac{t}{3} \right) \text{ gallons per hour.}$

(a) Is the amount of water in the tank increasing at time $t = 15$? Why or why not?

(b) To the nearest whole number, how many gallons of water are in the tank at time $t = 18$?

(c) At what time t, for $0 \leq t \leq 18$, is the amount of water in the tank at an absolute minimum? Show the work that leads to your conclusion.

(d) For $t > 18$, no water is pumped into the tank, but water continues to be removed at the rate $R(t)$ until the tank becomes empty. Let k be the time at which the tank becomes empty. Write, but do not solve, an equation involving an integral expression that can be used to find the value of k.

(a) No; the amount of water is not increasing at $t = 15$ since $W(15) - R(15) = -121.09 < 0$.

(b) $1200 + \int_0^{18} (W(t) - R(t)) \, dt = 1309.788$

1310 gallons

(c) $W(t) - R(t) = 0$

$t = 0, 6.4948, 12.9748$

<table>
<thead>
<tr>
<th>t (hours)</th>
<th>gallons of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>6.495</td>
<td>525</td>
</tr>
<tr>
<td>12.975</td>
<td>1697</td>
</tr>
<tr>
<td>18</td>
<td>1310</td>
</tr>
</tbody>
</table>

The values at the endpoints and the critical points show that the absolute minimum occurs when $t = 6.494$ or 6.495.

(d) $\int_{18}^{k} R(t) \, dt = 1310$
The Taylor series about $x = 0$ for a certain function f converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x = 0$ is given by

$$f^{(n)}(0) = \frac{(-1)^{n+1} (n+1)!}{5^n (n-1)^2}$$

for $n \geq 2$.

The graph of f has a horizontal tangent line at $x = 0$, and $f(0) = 6$.

(a) Determine whether f has a relative maximum, a relative minimum, or neither at $x = 0$. Justify your answer.

(b) Write the third-degree Taylor polynomial for f about $x = 0$.

(c) Find the radius of convergence of the Taylor series for f about $x = 0$. Show the work that leads to your answer.

(a) f has a relative maximum at $x = 0$ because $f'(0) = 0$ and $f''(0) < 0$.

(b) $f(0) = 6$, $f'(0) = 0$

$$f''(0) = \frac{3!}{5^2 1^2} = \frac{6}{25}$$

$$f'''(0) = \frac{4!}{5^3 2^2}$$

$$P(x) = 6 - \frac{3!x^2}{5^2 2!} + \frac{4!x^3}{5^3 2^2 3!} = 6 - \frac{3}{25}x^2 + \frac{1}{125}x^3$$

(c) $u_n = \frac{f^{(n)}(0)}{n!}x^n = \frac{(-1)^{n+1} (n+1)!}{5^n (n-1)^2}x^n$

$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(-1)^{n+2} (n+2)!}{5^{n+1} n^2} \frac{5^n (n-1)^2}{(-1)^{n+1} (n+1)!} \right|$$

$$= \left| \frac{n+2}{n+1} \cdot \frac{n-1}{n} \cdot \frac{1}{5} \cdot \frac{1}{x} \right|$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{5} |x| < 1$$

if $|x| < 5$.

The radius of convergence is 5.
The graph of the function \(f \) above consists of three line segments.

(a) Let \(g \) be the function given by \(g(x) = \int_{-4}^{x} f(t) \, dt \).

For each of \(g(-1), \ g'(-1), \) and \(g''(-1), \) find the value or state that it does not exist.

(b) For the function \(g \) defined in part (a), find the \(x \)-coordinate of each point of inflection of the graph of \(g \) on the open interval \(-4 < x < 3 \). Explain your reasoning.

(c) Let \(h \) be the function given by \(h(x) = \int_{x}^{3} f(t) \, dt \). Find all values of \(x \) in the closed interval \(-4 \leq x \leq 3 \) for which \(h(x) = 0 \).

(d) For the function \(h \) defined in part (c), find all intervals on which \(h \) is decreasing. Explain your reasoning.

(a) \(g(-1) = \int_{-4}^{-1} f(t) \, dt = -\frac{1}{2}(3)(5) = -\frac{15}{2} \)

\[g'(-1) = f(-1) = -2 \]

\[g''(-1) \text{ does not exist because } f \text{ is not differentiable at } x = -1. \]

(b) \(x = 1 \)

\[g' = f \text{ changes from increasing to decreasing at } x = 1. \]

(c) \(x = -1, 1, 3 \)

2 : correct values

\(-1\) each missing or extra value

(d) \(h \) is decreasing on \([0, 2]\)

\[h' = -f < 0 \text{ when } f > 0 \]

2 : interval

1 : reason
Consider the curve given by $y^2 = 2 + xy$.

(a) Show that $\frac{dy}{dx} = \frac{y}{2y - x}$.

(b) Find all points (x, y) on the curve where the line tangent to the curve has slope $\frac{1}{2}$.

(c) Show that there are no points (x, y) on the curve where the line tangent to the curve is horizontal.

(d) Let x and y be functions of time t that are related by the equation $y^2 = 2 + xy$. At time $t = 5$, the value of y is 3 and $\frac{dy}{dt} = 6$. Find the value of $\frac{dx}{dt}$ at time $t = 5$.

(a) $2y y' = y + xy'$
\[(2y - x) y' = y\]
\[y' = \frac{y}{2y - x}\]

(b) $\frac{y}{2y - x} = \frac{1}{2}$
\[2y = 2y - x\]
\[x = 0\]
\[y = \pm \sqrt{2}\]
\[(0, \sqrt{2}), (0, -\sqrt{2})\]

(c) $\frac{y}{2y - x} = 0$
\[y = 0\]
The curve has no horizontal tangent since $0^2 \neq 2 + x \cdot 0$ for any x.

(d) When $y = 3$, $3^2 = 2 + 3x$ so $x = \frac{7}{3}$.
\[\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{y}{2y - x} \cdot \frac{dx}{dt}\]
At $t = 5$, $6 = \frac{3}{6 - \frac{7}{3}} \cdot \frac{dx}{dt} = \frac{9}{11} \cdot \frac{dx}{dt}$
\[\frac{dx}{dt} \bigg|_{t=5} = \frac{22}{3}\]
Consider the graph of the function \(f \) given by
\[f(x) = \frac{1}{x + 2} \quad \text{for } x \geq 0, \]
as shown in the figure above. Let \(R \) be the region bounded by the graph of \(f \), the \(x \)- and \(y \)-axes, and the vertical line \(x = k \), where \(k \geq 0 \).

(a) Find the area of \(R \) in terms of \(k \).

(b) Find the volume of the solid generated when \(R \) is revolved about the \(x \)-axis in terms of \(k \).

(c) Let \(S \) be the unbounded region in the first quadrant to the right of the vertical line \(x = k \) and below the graph of \(f \), as shown in the figure above. Find all values of \(k \) such that the volume of the solid generated when \(S \) is revolved about the \(x \)-axis is equal to the volume of the solid found in part (b).

(a) Area of \(R \)
\[
\int_{0}^{k} \frac{1}{x + 2} \, dx = \ln (k + 2) - \ln (2)
\]

(b) Volume of the solid
\[
V_R = \pi \int_{0}^{k} \frac{1}{(x + 2)^2} \, dx
\]
\[
= -\frac{\pi}{x + 2} \bigg|_{0}^{k} = \frac{\pi}{2} - \frac{\pi}{k + 2}
\]

(c) Volume of the solid
\[
V_S = \pi \int_{k}^{\infty} \frac{1}{(x + 2)^2} \, dx
\]
\[
= \lim_{n \to \infty} -\frac{\pi}{x + 2} \bigg|_{k}^{n} = \frac{\pi}{k + 2}
\]
\[
V_S = V_R
\]
\[
\frac{\pi}{k + 2} = \frac{\pi}{2} - \frac{\pi}{k + 2}
\]
\[
\frac{2}{k + 2} = \frac{1}{2}
\]
\[
k = 2
\]