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Important Notes

The materials in the following section are organized around a particular theme that reflects 
important topics in AP® Statistics. The materials are intended to provide teachers with 
professional development ideas and resources relating to that theme. However, the chosen 
theme cannot, and should not, be taken as any indication that a particular topic will appear 
on the AP Exam.

Within these materials, references to particular brands of calculators reflect the individual 
preferences of the respective authors; mention should not be interpreted as the College 
Board’s endorsement or recommendation of a brand.
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Why Sampling Distributions?

Chris Olsen
Thomas Jefferson High School
Cedar Rapids, Iowa

The outline of the AP Statistics course as it appears in the Course Description presents 
four basic topics: exploring data, sampling and experimentation, probability, and statistical 
inference. Each of the first three topics supports the “larger” idea of statistical inference.

The sampling distribution is the basis for inferential statistics, whether one is doing 
estimation or testing a hypothesis. It is our understanding of the behavior of sample statistics 
that logically forms the basis for making inferences. Without an understanding of sampling 
distributions, the process of making inferences is mechanical: What statistic? What table? 
Reject or not? Next case.

AP Statistics is a concept course, not a course in mere mechanics. For a student to be 
able to generalize what he or she learns in the first statistics course, the mechanics are 
not particularly helpful. The first step to the second course begins with an exposure to 
probability, random variables, and that preeminent random variable: the sample statistic. The 
probability distribution of a statistic—its sampling distribution—is the primordial source 
of the p-values and confidence interval lengths. This is not merely true for the statistics we 
encounter in the AP Statistics course—it is true of all inferential statistics.

In our statistics textbooks the processes of inference may be thought of as an n-act play, 
Act I: “Assumptions” and Act N: “Conclusion/Confidence Interval.” Our textbooks will 
have a section or two prior to formal inference explaining sampling distributions but in our 
instruction they might sometimes recede into the background. To slim these sections would 
be as if the three witches in Macbeth did their bubbling, toiling and troubling while the 
initial credits rolled, and Macbeth—oblivious to their prattling—just grabbed a cup of soup 
and rode on without listening. Macbeth, of course, did not just ride off after his encounter 
with the witches, thank goodness. Without recurring consideration of the witches there is no 
drama in Macbeth; and without a recurring consideration of sampling distributions, there is 
little understandable basis for inference in statistics! 

Though the witches actually appear in only four scenes in Macbeth, without comprehending 
their role and Macbeth’s fascination with them we cannot properly interpret Macbeth’s 
decisions and actions. Similarly, consideration of sampling distributions is what guides 
actions and decisions during the course of statistical inference. A familiarity and 
appreciation of the place of sampling distributions in the great N-Act play of inference will 
bring rewards to your students in the AP Statistics course and beyond in their next statistics 
course. 

Why Sampling Distributions?
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In these Special Focus Materials, Roxy Peck, former Chief Reader in AP Statistics, sketches 
the motivation for sampling distributions. Then two high school teachers, Corey Andreasen 
and Floyd Bullard, provide a wealth of ideas for teaching about them. AP Statistics students’ 
mathematical knowledge of statistics can be improved, and our high school authors can 
choose the dynamism of simulation as a vehicle for teaching about sampling distributions. 
Indeed, one might argue that an experience with simulation before a mathematical 
presentation would improve those mathematical statistics courses!

Our “theme analogy” throughout is that sampling distributions are what-if scenarios, 
describing not the actual sample statistic we have but the perspective of all those sample 
statistics that might have been. It is this might-have-been that gives the sampling distribution 
its abstract quality; these classroom activities will translate the abstract into a more tactile 
and visual reality.
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Sampling Distributions: Motivating the What-Ifs

Roxy Peck
California Polytechnic State University
San Luis Obispo, California

Sampling distributions. The topic that strikes fear into the hearts of introductory statistics 
teachers everywhere. Clearly this is the most abstract concept that we ask our students to 
come to terms with in the AP Statistics course. Nonetheless it is critical that students develop 
an understanding of sampling distributions if they are to comprehend the logic of statistical 
inference.

While the topic of sampling distributions is difficult for students because of its abstract 
nature, the basic idea of a sampling distribution is actually relatively simple. To illustrate the 
idea, let’s begin with what may at first seem like a silly example. But please, do read on—the 
intention is to give a simple, concrete, intuitive example of what a sampling distribution is 
and how it is used to reach a conclusion in a hypotheses test.

I have a dog named Kirby. He is an adult dog and weighs 25 pounds. Suppose I ask you to 
decide if Kirby is a golden retriever. 

If you are like most people knowledgeable about dogs, 
you probably would say that Kirby was not a golden 
retriever and that you were fairly certain that you were 
correct in your judgment. How would you reach such 
a conclusion? Informally, you would probably use what 
you know about the behavior of the random variable 
X 5 weight for adult golden retrievers. There is, of 
course, variability in the weights of golden retrievers—
not all adult golden retrievers weigh exactly the same 
amount. But, even taking this variability into account, 
25 pounds would be an extremely unusual weight for 
an adult golden retriever. In fact, it would be so unusual 
that you would probably be quite confident in saying 
that my dog is not a golden retriever. 

In an analogy to a test of hypotheses, you could say that given the choice between
	 H0 : Kirby is a golden retriever

and
	 Ha : Kirby is not a golden retriever,

Sampling Distributions: Motivating the What-Ifs

An adult golden retriever.
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you felt that the information given (x 5 25 lbs.) provided convincing evidence that enabled 
you to reject the null hypothesis. Can you be positive that your conclusion is correct? 
Probably not positive—Kirby might just be the smallest, skinniest golden retriever ever—but 
you are probably still convinced that the choice to reject the “golden retriever” hypothesis 
is the correct one. (And, in this instance you would indeed be correct—Kirby is a Welsh 
corgi.)

Let’s think about the informal reasoning that led to the conclusion that Kirby was not a 
golden retriever. To put it in statistical language, you based your conclusion on the observed 
value of the random variable X 5 weight. The key to your being able to reach a decision 
depended on knowing something about the behavior of (i.e., the distribution of) the variable 
X 5 weight when the null hypothesis “golden retriever” is true. You relied on intuition and 
previous knowledge of golden retriever weights to make your assessment that 25 pounds 
would be a very unusual weight for a golden retriever. Had you not possessed the knowledge 
needed to make this judgment, it would have been possible to obtain the information 
necessary to approximate the weight distribution of adult golden retrievers by observing a 
large number of dogs known to be golden retrievers and then constructing a histogram of 
the observed weights. For example, if I had asked you if you thought that Kirby was a lesser 
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southern ridge dog, some observation would probably be in order—your experience would 
be unlikely to come to your aid.

So what does all this have to do with statistical inference and sampling distributions? I would 
argue that exactly the same logic underlies the formal hypothesis testing procedures of the 
AP statistics course. In a test of hypotheses, we use data from a sample to reach a conclusion 
about a population characteristic (often called a parameter). For example, we might be 
interested in testing the claim that 70 percent of the students at a particular high school carry 
a cell phone against the alternative that this percentage is greater than 70 percent. A random 
sample of 100 students from the school will be selected and each student in the sample will 
be asked if he or she carries a cell phone. The sample proportion, p, will then be used as 
the basis for making a decision to either fail to reject H0 : p 5 0.70 or to reject H0 : p 5 0.70 
in favor of the alternative H0 : p > 0.70. How can we make this decision? Just as knowing 
something about the distribution of the random variable x 5 weight when the hypothesis 
“golden retriever” is true in the dog example led us to a conclusion. What is needed in the 
cell phone hypothesis test is information about the behavior of the sample proportion (i.e., 
the distribution of the sample proportion) when the null hypothesis of p 5 0.70 is true.

Consider the following: the sample proportion from a random sample of size 100 is a 
random variable. How so? A random variable associates a value with each outcome in the 
sample space for some chance experiment. Here, think of the experiment as selecting a 
random sample of size 100 from the population of students at the high school. The sample 
space (set of all possible outcomes for this experiment) consists of all the different possible 
samples of size 100. The random variable ​

​̂ ​
 p​ associates a value with each different sample 

(which is the proportion who carry a cell phone for that particular sample), and so ​
​̂ ​

 p​ (or in 
fact any other sample statistic) can be regarded as a random variable.

Since a sample statistic is a random variable, then just like all random variables it has a 
probability distribution that describes its behavior. When the random variable of interest is a 
sample statistic, its probability distribution is called a sampling distribution.

So, if we knew the distribution of p when H0 : p 5 0.70 is true, we would know a lot about 
the behavior of ​

​̂ ​
 p​ when samples of size 100 are selected from the population. In particular, 

we would be able to distinguish “usual” values from extreme values, and this provides what is 
needed to make a decision in a hypothesis test.

For example, if we knew that ​
​̂ ​

 p​ 5 0.80 would be unlikely to occur when p 5 0.70, we would 
be able to reject the null hypothesis H0 : p 5 0.70 with confidence if we observed a sample 
proportion of .80. On the other hand, if ​

​̂ ​
 p​ 5 0.73 is a “usual” value for the sample proportion 

when p 5 0.70, we would not be able to reject the hypothesis H0 : p 5 0.70.

What makes this scenario more difficult than the “golden retriever hypothesis” example is 
that most people can’t rely on intuition and prior knowledge to make the assessment of what 

Sampling Distributions: Motivating the What-Ifs
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are usual values and what are unlikely values for the sample proportion random variable. It is 
here where simulation and statistical theory can help.

The general results about the sampling distributions of sample statistics (e.g., a sample mean, 
a sample proportion, the difference between two means or two proportions), provide the 
information that enables us to make the necessary distinction between usual and unusual 
values under the null hypothesis.

As you will see in the accompanying articles, simulation is a great way to approximate 
sampling distributions and to motivate theoretical results about the sampling distribution of 
sample statistics in many situations. But ultimately we rely on statistical theory (e.g., proven 
results such as “the distribution of the sample mean for a random sample of size n from a 
population with mean µ and standard deviation σ is approximately normal with mean µ and 
standard deviation ​  σ ___ ​ n ​ ​ when the sample size is large”) to tell us what we should expect to see 
when a particular null hypothesis is true.

So, let’s compare the two scenarios considered here—the first, obvious and intuitive dog 
scenario and the second, more realistic cell phone scenario.

Dog Scenario Cell Phone Scenario
H0 : Kirby is a golden retriever

Ha : Kirby is a not a golden retriever
Random variable: X 5 weight

Observed value: x 5 25
Question of interest: Would the 

observed value x 5 25 lbs. be unusual if 
Kirby is a golden retriever?

H0 : p 5 0.70
Ha : p . 0.70

Random variable: ​
​̂ ​

 p​ 5 sample proportion
Observed value: ​

​̂ ​
 p​ 5 0.80

Question of interest: Would the observed 
value ​

​̂ ​
 p​ 5 0.80 be unusual if p 5 .70?

Assessment: Based on what we know 
about the distribution of X 5 weight 

when H0 is true, 25 is an unusual value. 
We reject the hypothesis that Kirby is a 

golden retriever in favor of the alternative 
hypothesis that Kirby is not a golden 

retriever.

Assessment: If H0 is true, theory tells us that 
because the sample size is large— 

(np 5 70 and n[1 2 p] 5 30), ​
​̂ ​

 p​ has a 
distribution that is approximately normal 

with mean .70 and standard deviation ​




  ​ 
p(1 2 p)

 _______ n ​ ​  5 .046. The observed value 
of ​

​̂ ​
 p​ 5 0.80 is an unusual value when H0 

is true because it is more than 2 standard 
deviations above the mean, which is unusual 

for a normal distribution. We reject the 
hypothesis that the proportion who carry a 
cell phone is 0.70 in favor of the alternative 

hypothesis that the proportion is greater 
than 0.70.
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In my experience, students understand the dog example and find the reasoning intuitive. 
The only difference in the cell phone scenario is that we needed a little help when it came 
to making the “likely versus unlikely” assessment. Knowledge of the sampling distribution 
came to the rescue, providing the necessary information.

Consider trying an approach like this to motivate the study of sampling distributions. One 
reason that students have difficulty with the concept is that it is often introduced in the 
abstract and students don’t see why they would need to know the information that sampling 
distributions provide. Once students understand this, it is much easier to introduce the 
formal concepts of sampling distributions.

Sampling Distributions: Motivating the What-Ifs



10

Special Focus: Sampling Distributions

Sampling Distributions: The What-Ifs with Hands-On 
Simulation

Floyd Bullard
The North Carolina School of Science and Mathematics
Durham, North Carolina

Sampling distributions are difficult for many students to understand. When students first 
learn about distributions, they do so in the context of population or sample data. A common 
graphical representation of such data is a dot plot; each dot in such a dot plot corresponds to 
a real element of the population or sample. But a sampling distribution is more abstract. If 
one imagines a dot plot of a sampling distribution, then each dot corresponds to a particular 
possible random sample, most of which in all likelihood never was and never will be collected 
or observed. What’s more, the correspondence isn’t a direct measure of a characteristic of an 
actual object as it is with population or sample data—each dot corresponds to some function of 
everything in the sample and may not have any meaning in the context of a single individual.

The sampling distribution of a statistic is a distribution of imaginary outcomes, each one 
possible in a hypothetical sense. Only one of them is actually realized and observed. For 
our students to understand such a distribution, they must take a rather large step from the 
concrete world of measurable, tangible things into the world of alternate realities—they must 
learn to play what if.

This article is about classroom practice. You will find here seven classroom activities that all 
involve using simulations to approximate sampling distributions. They are arranged in the 
order that I use them when I teach AP Statistics. I do not myself suggest teaching a single “unit” 
on simulations. Rather, I use simulations throughout the year to help teach many different 
concepts. By sowing seeds of understanding of sampling distributions early and often during 
the year, the concept—before it is a crucial element of the course—becomes more natural to 
students than would be the case if the only distributions they saw were of raw data.

My class size is typically around 20. I believe the activities in this article will work well for 
classes of between 12 and 24 students, although they may need to be modified slightly for class 
sizes toward the small side of that range. Some of the activities may be modified for classes 
with fewer than 12 students, although generally they will take longer, since the modification 
will often take the form of one student doing what would usually be a task for two.

The activities described in this article are:

1.	 Capture/Recapture. It can be completed in a single 50-minute class period and 
requires no previous knowledge of statistics. It introduces students to a number 
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of ideas that are important in the AP Statistics syllabus, including point estimates, 
simulations, assumptions, and graphical representations of data, sampling 
distributions, and inference.

2.	 Polls (Sample Proportions). I use this activity fairly early in the year, around October, 
to give students an intuitive introduction to inference for a single proportion. This is 
well before such inference is more formally covered in the syllabus. I like this early 
introduction because during election years it is always highly relevant. In addition, I find 
that foreshadowing a topic early makes its later and more formal discussion easier for 
students to grasp, almost as if the students had been unconsciously digesting it during 
the interim.

3.	 The German Tank Problem. This popular activity particularly stresses the concept of 
a sampling distribution and may be used to introduce that idea. It also introduces the 
ideas of bias and sampling variability, and how estimators can be evaluated.

4.	 Baseball Players’ Salaries (The Central Limit Theorem). This activity introduces students 
to the Central Limit Theorem by having them sample baseball players from a known 
population and average their salaries. Students will see that although the population 
of salaries is highly skewed, the distribution of sample means is approximately normal 
when the sample size is fairly large.

5.	 Standardized Mean Heights (the t-Distribution Family). This 20-minute activity uses only 
a calculator and introduces students to the t-distribution family without entangling it 
with inference. The distributions are not plotted; rather, students call out loud simulated 
sample statistics and the heavy-tailed t-distribution is perceived aurally. With just five 
additional minutes, the activity may be extended to show students that as the sample 
size grows larger, the t-distribution has lighter and lighter tails, becoming more like the 
normal distribution.

6.	 Baseball Players’ Height/Weight Relationship (Regression Line Slopes). With this 
activity we return to the list of Major League Baseball players. This time, multiple 
samples are taken and used to construct regression lines of weight predicted from 
height. The slopes vary from sample to sample and by plotting a distribution of the 
slopes, students will understand the slope as a sample statistic with a distribution—a 
fact that often eludes them when their experience of bivariate data is limited to single 
samples.

7.	 Worm Species (the Chi-square Distribution, Sort-of). This activity is meant to precede 
a lesson on the chi-square test of goodness-of-fit. The chi-square statistic is never 
actually used in the activity itself. Instead, the activity permits students to create their 
own measure of “discrepancy” between a claimed categorical distribution and a set of 
categorical data—and then to simulate the sampling distribution of the measure they 
devised. From there it is only a short step from the goodness-of-fit test concept to the 
actual chi-square test.

Sampling Distributions: The What-Ifs with Hands-On Simulation
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1.	 Capture/Recapture

The following “Capture/Recapture” simulation is my preferred “first day of class” activity; 
it is accessible to students on Day One and in addition foreshadows much of what will 
come later in the year—point estimates, sampling distributions, simulations, graphical 
representations, inference, and assumptions.

For this activity, I like to use plastic frogs and beads, but M&Ms or any colored tokens work 
just as well. 

Put at least 100 frogs in a container such as a bag or tub. Show the students your container 
of frogs and then carry out the capture/recapture scenario, well-known to biologists and 
statisticians but probably unfamiliar to your students. That is, we will “capture” a certain 
number of frogs and “tag” them (here, by replacing the captured frogs with frogs of a 
different color), then release them back “into the wild.” We will then capture another 
set of frogs, this time not tagging them but simply counting how many among those 
captured are already tagged. For teaching purposes, it is helpful if the sample sizes in the 
two phases are different from one another (so students won’t confuse them). If you use 
about 100 frogs, then you should try to have around 20–30 frogs in both stages’ samples, 
though you need not count them out exactly—indeed, not counting them out exactly more 
closely mimics the way such studies are actually carried out. If you use more than 200 
frogs in your population, you might want to capture 35–50 frogs in each of your stages’ 
samples.

After you have carried out both stages of sampling, ask your students to estimate the 
population size. Let us suppose that you captured and tagged 25 frogs in stage one, and then 
captured 29 frogs in stage two, finding 7 of them already tagged. Your students will likely set 
up the following proportion: 

where N is the unknown population size. Solving for N in this case, we estimate the 
population to have about 104 frogs. 

If time permits, you might want to lead your students in a discussion about what 
assumptions are being made when we compute that point estimate. One of the most 
important is that both capture stages involved a simple random sample of the frogs in the 
population. (This assumption is credible because the proportion stated above is based on 
a well-mixed frog population.) In practice, how should that impact how the actual study 
would be carried out? Among other things, since it is probably not reasonable to assume that 
the frogs are randomly shuffling themselves about at all times, it means that both capture 
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stages must involve sampling from random locations. Additionally, we assume that between 
the two capture stages the population stays the same size, and the number of tagged frogs 
remains the same. This means that we should not wait too long between the two capture 
stages, since that would allow the population to change sizes, perhaps substantially. Also, the 
tags must not make the frogs any more or less likely to be captured the second time than the 
nontagged frogs. In particular, the tags must be harmless to the frogs, since a dead frog is 
one that is unlikely to be recaptured.

A point-estimate alone does not require a simulation, and indeed this activity is not 
helpful for middle school students if all that is desired is a point estimate. But a crucial 
part of inference is attaching to a point estimate some margin of error. Although the 
theoretical variability of the point estimate in this activity—the estimated population 
size—is not within the AP Statistics curriculum, students can estimate its variability through 
simulation. That’s what this activity is primarily about: using simulations to assess variability 
and uncertainty—variability in the sample, and the consequent uncertainty about the 
parameter (population size).

When we design our simulation to estimate the variability in our statistic, we have to choose 
a population size to work with. But in reality you wouldn’t know the population size either 
before or after doing your study. So how can you assess the variability of your statistic 
accurately?

One way is to see how the statistic behaves for a variety of different values of the true 
parameter—in this case population size. In order to help distinguish between actual data and 
simulations, I have the students use beads instead of frogs; my frogs are the “real” data, while 
their beads are simulations of possible other outcomes. Any colored tokens will do. One 
color represents untagged frogs and another color tagged frogs. Students simply switch one 
color for another to “tag the frogs.”

Have students work in groups and assign them different population sizes ranging from 30 
to 300 or so by 10s. Give them the beads or tokens they need to conduct the simulation 
themselves. The student group with population size N 530 will require 30 beads, and so 
on. They are to tag as many beads as you did earlier with the “real” frogs by replacing that 
number of beads with another color, then mix their beads well, and then sample as many 
beads as you did in the second capture stage, thus replicating the earlier study exactly, except 
for the population size. They should then repeat the second-stage capture process a total of 
20 times, counting each time how many “tagged frogs” they found in their sample. (They do 
not need to repeat the tagging process each time.)

On the board, draw a pair of perpendicular axes, one (the horizontal is better) marked 
“population size” and the other marked “number marked in recapture.” After each student 
group has performed 20 simulations, have the group come to the board and draw a boxplot 

Sampling Distributions: The What-Ifs with Hands-On Simulation
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of their estimates over their actual frog population size. The end result should be a series of 
parallel boxplots such as the one shown in the picture below. 

In the graph above, a horizontal dashed line is drawn at 7, the observed number of tagged 
frogs that we saw in our second capture stage. We now address the question “How many 
frogs are there in the population?” We already came up with a point estimate (about 
104 frogs) using a proportion; that is where the middle of the three vertical dotted lines are 
drawn. But we know that the point estimate of 104 frogs is not necessarily exactly right. We 
really want to know what other possible population sizes are consistent with our observation 
of 7 tagged frogs in the recapture stage. For this, we look at which boxplots contain “7” 
as a “typical” value. Let us suppose that we define “typical” to be the middle 50% of the 
values—those represented by the center box in each boxplot. The graph suggests to us 
that populations ranging from N 5 100 to N 5 130 might very typically have resulted in 
7 tagged frogs in the second capture stage. That is where the other two vertical dotted lines 
are drawn. Thus, under this definition of consistency between population and observation 
(i.e., observation falls in the middle 50 percent of its sampling distribution under a given 
population size), we estimate that there are between 100 and 130 frogs in the population. We 
now have not only a point estimate, but a range of other plausible values as well.

If your students do not know what boxplots are on the first day of class, you may use this 
activity a week or two later, as an application of that topic. Or you may use this activity on 
the first day of class but modified in the following way. Instead of constructing a boxplot 
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of their 20 sampled values, students are to order their 20 sampled values from smallest to 
largest and keep only the middle 18 as “typical” (discarding the highest or lowest value if it 
occurs only once and is therefore not “typical”) and then draw a vertical line segment from 
their lowest typical value to their highest typical value in lieu of a boxplot. The rest of the 
activity works the same way.

2.	 Polls (Sample Proportions)

Some years are more interesting than others with respect to preelection polls, but every 
year around October you can easily find lots of polls about how people feel about different 
candidates for office. That’s a little early in the AP Statistics year to be teaching about 
confidence intervals, but it’s not too early to plant the seed of understanding sampling 
distributions, which is key to so much of inference. The following is an activity that can be 
done with students using any poll, not just a political one. My recommendation is to use one 
conducted by a reputable organization, such as Gallup or the New York Times. The latter is 
very good about printing with their polls a statement about how the poll was conducted and 
what its margin of error means. Discovering that meaning is what this activity is about. For 
example, the following statement from the New York Times, April 18, 2006, accompanied a 
poll of Ohio residents. A key statement is printed here in boldface.

The latest New York Times/CBS News poll of Ohio is based on telephone interviews 
conducted Oct. 11 to Oct. 15 with 1,164 adults throughout the state. Of these, 1,020 said 
they were registered to vote.

The sample of telephone exchanges called was selected by a computer from a complete list 
of Ohio exchanges. The exchanges were chosen so as to ensure that each area of the state 
was represented in proportion to its population. For each exchange, the telephone numbers 
were formed by random digits, thus permitting access to listed and unlisted numbers alike.

Within each household, one adult was designated by a random procedure to be the 
respondent for the survey.

The results have been weighted to take account of household size and number of telephone 
lines into the residence, and to adjust for variations in the sample relating to geographic 
region, race, sex, age, education and marital status.

In theory, in 19 cases out of 20 the results based on such samples will differ by no more 
than three percentage points in either direction from what would have been obtained by 
seeking out all adult residents of Ohio.

For smaller subgroups the potential sampling error is larger. Shifts in results between polls 
over time also have a larger sampling error.

In addition to sampling error, the practical difficulties of conducting any survey of public 
opinion may introduce other sources of error into the poll. Differences in the wording and 
order of questions, for example, can lead to somewhat varying results.

For the purpose of the present activity, we will use one of the results of the Times’ poll 
published October 18, 2006: When asked “Compared with previous congressional elections, 
this year are you more enthusiastic about voting or less enthusiastic?” 

Sampling Distributions: The What-Ifs with Hands-On Simulation
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Forty-two percent of registered voters said “More.” Let us suppose that we have just shared 
this result with our students. We now call to the students’ attention the bold statement above: 
“In theory, in 19 cases out of 20 the results based on such samples will differ by no more than 
three percentage points in either direction from what would have been obtained by seeking 
out all adult residents of Ohio.” How, we ask, can they know that?

This activity requires a calculator such as the TI-83 that is capable of simulating binomial 
random variables. Tell your students that you are going to simulate a poll of 1,020 randomly 
selected registered Ohio voters. (At present, they are just to observe what you do, not 
conduct a simulation themselves.) The syntax on the TI-83 for simulating a binomial random 
variable with parameters n and p is RandBin(n,p). Simulating a poll of 1,020 randomly 
selected registered Ohio voters therefore requires entering RandBin(1020, p), where p 
is the proportion of all registered voters in Ohio who are more enthusiastic about voting this 
year than in previous congressional election years. Unfortunately, p is not known to us.

Once you are sure that your students understand how you will simulate the poll, and the 
problem of not knowing p, ask them for suggestions. Many will want to use 0.42 for p; since 
that was in fact the actual sample proportion, it is our best guess as to what p really is. That’s 
fine, but it is very important that the students understand that the 0.42 we are entering is just 
a guess as to the actual population proportion. We don’t really know that p 5 0.42.

For our sample of 1,020 Ohio voters, we enter RandBin(1020, 0.42). Let’s 
suppose that after repeated trials, your class reported 433 “more enthusiastics.” Then ask 
the students what they’d like to do with that number; hopefully someone will say, “Let’s 
compute the sample proportion.” That value would be 433/1020 5 0.4245, which we round 
off to 42 percent.

If you happened to get 42 percent, ask your students, “I got 42 percent. If I simulate a new 
random sample, will I get 42 percent again?” Or, if you happened to get something other 
than 42 percent, ask your students, “I used 0.42 for p, but I got [let’s say] 45 percent from 
my simulation. Why are they different?” The point of these questions is to guide students 
to seeing that the simulated sample proportion need not match the presumed population 
proportion, and that if a new sample is taken, you may get a sample proportion that not only 
differs from the population proportion but may also differ from the first result.

Once the students understand that, repeat the simulation. RandBin(1020, 0.42). 
Let’s suppose that this time you get 414, and 414/1020 5 41%. (We are now playing the what 
if game. What if the sample had been this particular group of 1,020 people?) You want to 
be sure before continuing that the students understand what is happening each time you 
simulate a sample. You are simulating a new random sample of 1,020 registered Ohio voters, 
asking them the question about voting enthusiasm, and counting how many people in that 
random sample respond “more enthusiastic,” still assuming that in the whole population, the 
true proportion who feel that way is 42 percent.
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Once they understand that, generate a few more random samples. Let’s say we now get a 
44 percent and a 39 percent. We have now accumulated four samples, and therefore four 
sample proportions: 42 percent, 41 percent, 44 percent, and 39 percent. At this point draw a 
horizontal line on the board, put numbers under it for integer percents ranging from about 
35 percent to 50 percent, and begin constructing a histogram by drawing an “X” over each 
of the four sample percentages you’ve obtained. Underneath the line, label the axis “% saying 
more in random sample, supposing p 5 0.42 in population.”

When you are confident that the students understand the simulation so far, then instruct 
them to all do the same thing you just did on your calculator, and write down the sample 
proportion they got. Take a quick survey in the class. “How many of you got 42%? How 
about 45%? Anyone higher than 50%? No? How about lower than 35%? No one?” You would 
like students to realize, even if it is at this point unconsciously, that while there is variability 
in their sample proportions, it is not dramatic. Few students, in fact, will have results greater 
than 45% or less than 39%.

Ask your students to do five or so more simulations each1, and then to come to the board 
and continue constructing the histogram.

In my classes I do so many simulation activities during the year that my students are quite 
familiar with doing this by mid-October and I hardly need to instruct them at all. If I draw 
an axis on the board and put an “X” over it somewhere, they know that they’ll shortly be 
at the board doing the same thing. This seems to me a good thing. We are constructing 
simulated sampling distributions so early in the school year that by the time we get to 
formally talking about what they are and giving them the name sampling distribution, my 
students already really know what they are: a sampling distribution is a histogram2 of sample 
statistics you would get from many different possible random samples.

You should see on the board a more or less normal-shaped distribution centered on 
42 percent. Remind the students once again of the newspaper statement: “In theory, in 
19 cases out of 20 the results based on such samples will differ by no more than three 
percentage points in either direction from what would have been obtained by seeking out all 
adult residents of Ohio.” Does our simulation bear that out?

The students at that point will hopefully think to count how many of their simulated samples 
were off from the population proportion of 42 percent by more than three percentage points. 
And hopefully it will be only about 5 percent of your simulated samples. So while you 
haven’t proven anything, you have at least seen what is meant by the newspaper statement.

1. The number of simulations you ask them to do depends on how many students are in your class. A hundred or so simulations for the 
whole class is a nice target number, so for a class of 20 you might ask them each to do 4 or 5 simulated samples.

2. I am aware of using sloppy language here: a distribution is not a histogram. The latter is a graphical representation of the former. But 
conceptually, students who associate the board histogram with the repeated-sample simulation likely have a correct understanding of what 
a sampling distribution is.

Sampling Distributions: The What-Ifs with Hands-On Simulation
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And you also have given students a healthy introduction to sampling distributions, even if 
you never use that term.

But the activity isn’t over. Ask your students: “Are you convinced? Do you believe what the 
newspaper says about 19 out of 20 cases being within three percentage points?” It is not an 
easy question to answer, but with some guidance (it might help to point to what you wrote 
under the histogram), they may realize that your activity up to this point relied upon a 
supposition that may in fact not be true: that the real proportion of all Ohio registered voters 
who are more enthusiastic this year is 42 percent. The poll suggested that, but we don’t really 
know. What if in fact the real value of p was something different? Suppose it’s very different! 
Let’s see what happens if we repeat the activity but this time use p 5 0.80.

On another part of the board, draw a new axis and numbers ranging from 75 percent to 
85 percent. Write under it “percentage saying more in random sample, supposing p 5 0.80 
in population.” Get the ball rolling by doing one or two simulations yourself, entering 
RandBin(1020, 0.80), then ask them to do several simulations each (about as many 
as they did before), and put them on the histogram.

The result, not surprisingly, is that even with a dramatically different value of p, it is 
unusual for the sample proportion to differ by more than three percentage points from the 
population proportion. It is still the case that in about 19 out of 20 cases, we are within three 
percentage points of the population proportion.

And now the activity really is over. There are two concepts that have been addressed, both of 
them planting seeds of topics that will be covered more thoroughly later in the AP Statistics 
course: sampling distributions and confidence intervals.

Before moving on to the next activity, I will make three comments. First, you may notice that 
we are here playing what if on two levels. We are taking repeated samples and addressing 
the question, “what if this had been our random sample?” This is the what if that is being 
referred to in the title of this article, and it is the basis of sampling distributions. But we 
are also looking at what the entire sampling distribution would have looked like under 
two different values of p. What if p were 0.42? What if p were 0.80? That is conceptually a 
different matter.3 Help students be aware that the reason we look at different possible samples 
is not the same as the reason we look at different possible parameter values. We do the 
former because we want to understand the behavior of a sample statistic over many repeated 
samples. We do the latter because we want to see whether, and how, that behavior depends 
upon the parameter value.

My second comment is that the calculator will actually permit the creation of many 
outcomes of a binomial random variable at a time, by adding an additional argument after 
n and p: RandBin(n, p, N) will create N binomial outcomes, each with parameters n 

3. This was also addressed in the Capture/Recapture activity, by having students see what the sampling distribution of recaptured frogs 
would look like under many different possible population sizes.
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and p, and return them as a list. So you can actually practice the activity yourself before you 
do it with the class, like this: RandBin(1020, 0.42,100)/1020 → L1. Then make a 
histogram of list L1 to see what to expect on the board when you do the activity in class. 

I do not recommend that you actually do multiple simulations this way in class, however. 
There are two good pedagogical reasons for not doing this in class. First, done this way the 
activity would become a mystifying “black box” for many students. They push a button 
and they get a histogram, but they don’t know what it means and they’re no closer to 
understanding sampling distributions than they were before. Students need to see samples 
simulated4, and a statistic computed for each sample in order to appreciate what’s going into 
the sampling distribution. The second pedagogical reason is that n and N are two completely 
different things, and there’s no need to invite students to confuse them.

Finally, my third comment is that at some point during this activity it may be worth pointing 
out to students, perhaps by way of asking leading questions, that the number or registered 
voters in Ohio—i.e., the population size—is irrelevant to the inference. You could, for 
example, at the conclusion of the activity ask the students whether the margin of error would 
be any larger if you sampled the same number of voters from the entire United States rather 
than just from Ohio. Very likely, some students will think that the margin of error should 
be larger since the samples would then represent a much smaller fraction of the population. 
But if you then press them to explain what would be different about the simulation activity, 
they may realize that nothing in the activity requires knowing or using the population size at 
all. For many students this is troubling because it is so counter to their intuition. Yet it is, of 
course, a fact, so exposing students to this fact about N while conducting this activity early in 
the year will serve them well later.

3.	 The German Tank Problem

Teachers tend to fall into three groups with respect to the German Tank Problem. There are 
some teachers who have never heard of it, a group which I happily find to be diminishing 
from year to year; there are those who have heard of it but not tried it in their own 
classrooms; and there are those who have tried it and love it. 

Those who fall in the second group often have chosen not to use the activity because they 
fear that taking a class day—or even worse, two class days—for a single activity is too great 
a price to pay. They assume that it is time lost, that the rest of the syllabus will still take the 
same amount of time, and they will therefore be obliged to cut or crunch at some point 
in the future. I believe they are mistaken. An understanding of sampling distributions is 
very important for students in AP Statistics, and the German Tank activity is very good 
for introducing students to the concept. Time spent on the activity introducing sampling 
distributions early will actually save time in the long run. Future discussions about bias, 
the Central Limit Theorem, confidence intervals, p-values, significance levels, and other 

4. Admittedly, even the sampling procedure is a little bit of a “black box” in this activity. But I have found it is sufficiently accessible to 
students.

Sampling Distributions: The What-Ifs with Hands-On Simulation
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concepts associated with sampling distributions will go much more smoothly later in the 
course if students have a solid grasp of sampling distributions earlier. And I have found no 
better activity than this one for giving students that solid grasp.

The version of the German Tank problem I present here is a variation on an activity I learned 
about at an NCTM meeting, one that I have found works well for my students and can be 
done in one or two 50-minute class periods. My teaching colleague Dan Teague has written 
an excellent paper about a variation on this activity that does not have a war context, which 
he calls The Taxi Problem5. I prefer to preserve the war context, first because it is historic 
(it was a real mathematical problem during World War II whose solution had strategic 
implications), and also because I think it is good for students to see the full breadth of the 
real-world applications of mathematical problems. 

The history behind this famous problem is (more or less) as follows. During WWII, Allied 
spies were asked to estimate the numbers of tanks the Germans had of various types. At 
about the same time, the Allies were able to capture a number of German tanks, and it was 
discovered that part numbers on the tanks had coded information that almost certainly 
indicated serial numbers from the same factories. The part numbers were decoded, and 
British mathematicians were given the serial numbers and asked to estimate the number of 
tanks. The mathematicians came up with estimates quite a bit lower than those given by the 
spies. Long after the war, it was discovered that the spies had been deceived by the Germans 
repainting their tanks to increase their apparent numbers. The mathematicians were much 
closer to getting the number of tanks right.6

For the classroom activity we simplify the problem by considering a population {1, 2, 3, . . . N} 
with an unknown parameter, the population size N, to be estimated. In advance of doing this 
activity you should prepare bags of numbered tags, such as squares of cardstock paper. The 
bags should all be identical, containing chits going from 1 up to the same number N. There 
should be one bag for every 3 or 4 students in your class. Let’s suppose N is 342.

On the day of the activity, put your students in groups of 3 or 4 and give each group a bag. 
Tell your students the historic context and tell them that they are going to play the role of 
the British mathematicians. Each group shuffles up the chits in their bag and then draws 
7 numbers at random. Each group’s task is then to come up with (1) an estimate of N, and 
(2) a description of the process they used to come up with their estimate. The latter, they are 
instructed, must be sufficiently clear that it may be applied to any sample of 7 numbers. 

If they finish early, they are asked to come up with another method. Students often come up 
with lots of good ideas, including things like “double the sample mean,” “double the sample 

5. This paper can be found at http://courses.ncssm.edu/math/Talks/index.htm.

6. This problem was first introduced to the world in 1947, shortly after many documents concerning WWII became declassified. The 
original article was An Empirical Approach to Economic Intelligence in World War II by Richard Ruggles and Henry Brodie, published in 
the Journal of the American Statistical Association, Vol. 42, No. 237. (Mar., 1947), pp. 72–91. Much has been published about it since then, 
and information can readily be found on the Web by searching for “German Tank Problem.”



	 21

median,” “six times the sample standard deviation,” “the mean plus two standard deviations,” 
and more. Occasionally a group comes up with “the smallest number in the sample plus the 
largest number in the sample” and I even once had a group say “8/7 times the largest number 
in the sample.” Each of these may have a rational justification. 

After 10 minutes or so, have the students reveal their methods and their estimates (speaking 
technically, the methods are “estimators” and the actual numbers are estimates) and I write 
them in two columns on the board. The same method often comes up multiple times. When 
this happens, I write the different groups’ estimates in a row next to it. On the board you may 
see something like the following:

Method
Double the mean
Six times the standard deviation
Four times the standard deviation
Sample max plus sample min
Third quartile plus one standard deviation
Double the median

Estimate of population size
358, 480, 404
874
515, 353
320
499
408, 644, 212

The students usually want to know the “true” answer, and at this point it could be revealed. 
I then find the estimate on the board that comes closest to that number and point to it 
and say, “This estimate is closest. Therefore, this method [whichever it is] must be the 
best method for estimating, right?” A few students will say “Yes,” but most will see that 
the goodness of the estimator cannot be judged by a single estimate based on one random 
sample. Is the estimate good because the method is good or because the sample was “lucky”? 

A discussion then begins with students about how one might judge estimators. If you can’t 
judge an estimator based on how it did in practice with a sample (after all, in practice, we 
usually get only one sample), then how are we to judge it? One answer is: We judge it on how 
“well” it would perform over many possible random samples—and this brings in the idea of 
simulations. 

The students should then simulate their own random samples of size 7 from a population 
whose size N is known. It is probably a good idea here to use the number that you actually 
used for the bag of numbers. Let us suppose it is N 5 342. A sample of size 7 may be 
simulated on the TI-83 thus: randInt(1,342,7)→L1, where “→” is the “store” 
function. (Occasionally students will get a duplicate in a list—have them replace the 
sample with another.) Instruct your student groups to create 50 or so simulated samples 
from the population and apply their method (estimator) to each sample, recording the 
estimate that each sample produces. (Note that this is the moment when the what if game is 
being played. “What if this had been our actual sample? . . . What if this had been our actual 
sample?”) When they’re finished, they should make a histogram of their estimates (this is the 
estimated sampling distribution of their statistic) on their calculator and then on the board. 

Sampling Distributions: The What-Ifs with Hands-On Simulation
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It is also helpful to have them report the mean and standard deviation of their sampling 
distribution.

Below is a set of nine histograms, each based on a different estimator, showing the sorts of 
histograms that are typical. In these graphs, the population size N 5 342 was used, and each 
histogram reflects 50 simulated samples. A vertical line is drawn at N 5 342 to make it easier 
to see where the true population parameter lies. Additionally, the same horizontal scale is 
used for all graphs to make it easier to compare the distributions’ spreads. Finally, the mean 
and standard deviation for each sampling distribution is given.

After the histograms are drawn on the board, the discussion resumes once more: Which 
estimator (method) is “best”? We’ve made it clearer now what is meant by “best” in that 
we’ve specified that it must be “good over many random samples,” but we still haven’t defined 
“good.” Do we want to choose the estimator that is exactly right most often? Perhaps, but a 
method that generally comes very close but never actually gets it exactly right may still be a 
good estimator. What then? 

This is an excellent time to discuss bias and variability. All other things being equal, lack of bias 
is a good thing, and so is low variability. Put together, they make a good estimator; an estimator 
with low bias and low variability results in estimates that are pretty close most of the time. If 
a student group comes up with “six times the sample standard deviation,” a simulation based 
on 50 random samples will show a clear bias, leaning towards overestimation of N. Likewise 
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“the mean plus three standard deviations.”7 “Two times the mean” can be seen to have lower 
variability than “two times the median,” even though both are unbiased. You have to pay 
attention to the scales on the histograms to compare these appropriately. 

“Sample minimum plus sample maximum” does surprisingly well. Students are always 
impressed by that one. They eventually will probably want to know what the British 
mathematicians did. Although the real-world problem involved an unknown upper and 
lower bound to the population, the mathematicians chose as their estimator the equivalent of 
what, for this activity, would be 8/7 times the sample maximum. This happens to be (though 
you need not share this with students) the estimator having smallest variance among all 
unbiased estimators of N. But interestingly, the distribution of this statistic is skewed, not 
symmetric. Students don’t like that. They think something must be wrong with a statistic if 
its distribution is skewed. But that is, of course, not so. There is no inherent reason to prefer 
a symmetric distribution over a skewed one.

A few students have pointed out that in the context of the German tanks, bias in one 
direction may be worse than bias in the other. It may, for example, be much more dangerous 
to underestimate your enemy’s strength than to overestimate it. This is an excellent point. 
Although unbiasedness and low variability are good things, there is in fact no single gold 
standard by which to compare all estimators. It depends on what you want the estimator 
to do.

Here is a final comment on an issue that I do not suggest should be a focus in class, but 
which, if your students raise it, may warrant a brief discussion, such as the following: Joe 
Student: “We performed all of our simulations using N 5 342 because we knew that was the 
right answer. But in real life you wouldn’t know what the right answer was. So how could 
you perform the simulations?” You: “Good point, Joe! One thing we could do is perform the 
simulations for a variety of different plausible values of N. Remember how we did that with 
the Capture/Recapture problem on the first day of class? Or it might turn out that the way an 
estimator performs for one value of N is about the same as the way it performs for any value 
of N. For this problem, for example, we can observe the following: If we change N, we really 
only change the scale of values in our sample, and therefore, for these estimators, we also 
only change the scale of the sampling distributions. How the estimators perform relative to 
other estimators would be the same, even if N were larger or smaller.”8 Joe: “Thanks, O Wise 
and Sage Instructor!” (Well, OK, we might be reaching for that last comment.)

4.	 Baseball Players’ Salaries (The Central Limit Theorem)

I have found that a good way to simulate samples from an actual population is to create a 
complete list of a population whose properties can be determined and to index them with 

7. Both of these methods are justified by students using properties of the normal distribution, but this population is not normal.

8. It very rarely happens—I have never had it happen—but it is possible for students to concoct an estimator for which this is not true. If 
an estimator of N involves adding a constant, then that will not “stretch” as N changes.

Sampling Distributions: The What-Ifs with Hands-On Simulation
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consecutive integers (“ID numbers”).9 Students can then use their calculators to generate 
random integers and refer to the list to see which population member has that ID number. 
In this way they can fairly quickly construct random samples from a population, and the 
sampling process is transparent, not hidden by the technology. 

One such complete list that I have found useful in the classroom is all Major League Baseball 
(MLB) players. Posted on AP Central® is such a roster, including players’ names, teams, 
jersey numbers, positions, ages, heights, weights, and salaries.10 Although the activities 
described in this article only involve sampling salaries, (this activity and heights and weights, 
a later activity), other items are included because they make the data more accessible to 
students, and they may be of use to teachers in other sampling activities they may devise on 
their own.

The purpose of this activity, is to demonstrate the Central Limit Theorem. The salaries of 
MLB players are highly skewed, but the sampling distribution of sample means is fairly 
normal when the sample size is around 20.

For this activity students should each have a list (N 5 866) in their hands, or at least one list 
per pair of students. They are to randomly choose a player from the list by entering on their 
calculators:

	 randInt(1,866)

Then they look in the list to find the salary of the player whose ID number is the one they 
just found. They should write down that salary on a piece of paper, sample again, get a new 
salary, etc. Ask the students to do this several times each, enough to have a total of about 
100 samples among all your students.11 As an example, if you have 20 students working in 
pairs, then each pair should sample about 10 MLB players. I would recommend that you 
explicitly say “I want each pair of students to get about 10 or so randomly sampled players’ 
salaries.” This performs the valuable function of deemphasizing the number 10, because it is 
not crucial in this activity.

While they are sampling baseball players’ salaries, draw a horizontal axis on the board, on 
top of which a histogram of salaries will be constructed. As your students finish sampling 
their players, they should come to the board and put X’s over the salaries they sampled. 
Ask them to round to the nearest $1,000K (i.e., million). Below is a histogram of what 
100 sampled salaries might look like.

9. For this I thank my teaching colleague Gloria Barrett.

10. It is possible that the list posted online will be more up-to-date than the list which is referred to in this activity description. Naturally, 
the activity and the concepts are the same—only the particular players and their salaries will have changed.

11. I have found from experience that about 100 X’s in a board histogram are usually sufficient to show the important characteristics of 
the distribution.
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Several things are obvious from the histogram. First of all, the salaries are very right-skewed. 
Second, a typical salary is around $1,000K, a million dollars. It is not clear what the mean 
salary is, since the skew makes it difficult to tell, but it would appear to be around $3,000K 
($3 million) for this set of 100 draws.

The next phase of this activity is to have students sample again, but this time they are to take 
samples of size n 5 5 and average the five salaries together. The easiest way to take a sample 
of size n 5 5 is probably to have students enter this on their calculators:

	 Sort(randInt(1,866,5))→ L1

They then use the list editor mode to see the five ID numbers, and they fill in the 
corresponding salaries in list L2. The sorting done above just makes it easier to flip through 
the MLB list to find the five players. If a student or student pair gets a list of five players 
that includes a duplicate, then they should replace that player or the whole sample.12 Once 
again have them repeat this process over and over until the entire class has about 100 sample 
means. As before, do not mention the number 100 to the class, or put any special importance 
on the number of samples they are each to collect. Indeed, what I sometimes find is helpful 
is to monitor the students’ samples, and after I sense that there are about 100 sample means 
in the room, I begin instructing the groups to go to the board individually, regardless of 
how many they’ve completed. That way, the class isn’t waiting for the slowest group to finish, 
no one feels pressured, and no one attaches any importance to the number of samples that 
were collected. This is very important, because if given the chance, students will confuse 

12. Mathematically, it makes little difference whether such a sample is kept or replaced. In fact, the Central Limit Theorem is more 
correctly demonstrated if you sample with replacement, permitting such duplicate players in a sample. But pedagogically, this is hard to 
explain. I find it better just to go with what we do in actual practice, which is sampling without replacement.

Sampling Distributions: The What-Ifs with Hands-On Simulation
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the sample size n with the number of samples collected. It is helpful if the new histogram of 
sample means is drawn parallel to the population histogram, with the axes matching up, but 
it isn’t necessary if there isn’t room for both histograms.

After about 100 sample means are marked as X’s on the board, the new histogram might look 
something like this:

We see that the distribution is much less skewed than before, but with n 5 5, your students 
will probably still be able to detect some skew. The center of the distribution is about the 
same as before, but the spread is clearly less. That reflects two facts that students may already 
know: The mean of sample means equals the population mean13, and the standard deviation 
of sample means equals the population standard deviation divided by the square root of the 
sample size n.

In the final phase of this simulation, students should repeat as before, only this time using 
samples of size n 5 20. Duplicate players in a sample of size 20 will be fairly common. When 
such a sample appears, students should just toss it out (since in practice we sample without 
replacement) and get a new sample. Alternately, they could just replace the duplicate players 
in the sample. (This is slightly less convenient, though.)

If students are taking 10 samples each, you might want to reduce that number so as to 
save some class time. Additionally, you may want this time to have students round up to 
the nearest $500K instead of $1,000K. There will be fewer bins this time, and the sample 
means will be much more concentrated around the center of the sampling distribution. 
The resulting histogram may look something like the one below, which reflects the means 
from 100 random samples. 

13. Notice that the word “mean” has been used three times in this phrase, each time referring to something different! The mean (over 
many random samples) of sample means (over the five MLB players’ salaries in each sample) equals the population mean (of all 866 
players’ salaries). This is equivalent to saying that the sample mean is an unbiased estimator of the population mean.
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Now the distribution is clearly less skewed and less spread out, but its center remains in 
about the same place, about $2,500K or $3,000K.

It is possible that students will ask you what the true population mean is, and even if they 
don’t, it may be a good idea to tell them. (It is $2,761K.) We can then see that all three of the 
distributions are indeed centered on about that value.

There are three lessons in this activity. First, for any sample size, the sample mean is an 
unbiased estimator of the population mean. That is to say, although any particular sample 
may have a mean that is higher or lower than the actual population mean, over many 
repeated samples, the mean of the sample means will equal the population mean. Students 
will not generally grasp the meaning of “unbiased” unless they understand completely what 
a sampling distribution is. Hopefully by the time they do this activity they will have already 
become comfortable with the concept. If not, there’s no time like the present!

The second lesson of this activity is that the distribution of sample means becomes less 
spread out as the sample size increases. The practical importance of this is that you can 
estimate a population mean with greater precision if you use a larger sample size.

The third lesson is of course the Central Limit Theorem: The sampling distribution of the 
sample means becomes more nearly normal as the sample size gets larger, going from 1 to 5 
to 20. (Again: The number of simulations that students performed is irrelevant!) Although 
we’ve only seen this for one population, the CLT is in fact true for any finite population. 
In this activity, the population of MLB players’ salaries is quite skewed, but the means 
of samples of size n 5 20 is approximately normal. The practical importance of this is 
substantial: With large enough samples, we can know the shape of the distribution of sample 
means even if we don’t know the shape of the distribution of the population. It is the CLT 
that allows us to perform inference on sample means by invoking properties of the normal 
distribution.

Sampling Distributions: The What-Ifs with Hands-On Simulation
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I have two additional comments on this activity. First, I want to comment that this activity 
is similar to the popular classroom activity involving sampling pennies and averaging 
their ages.14 Both of them are excellent in suggesting to students the behavior of sampling 
distributions, the nature of the sampling process, and especially the Central Limit Theorem. 
Both begin with nonnormal populations and result in fairly normal distributions for sample 
means with n 5 20 or n 5 25 or so. 

Second comment: This activity is good for demonstrating that the CLT “works” even when 
the population distribution is skewed. We could have done the activity using baseball 
players’ ages or heights or weights and the same thing would have resulted, but it would be 
less dramatic since those populations are all pretty normal to begin with. Indeed, such an 
activity might not convince students of the power of the CLT. However, it should be pointed 
out that for data this skewed, means are often not the best way to summarize the population. 
The median baseball player salary would be a better representative of a “typical” salary than 
the mean, which is very influenced by outliers. In this case, the median salary is $950K, 
about a fourth the size of the mean of $2,761K. Both of these are, of course, very large 
salaries by most people’s standards. But there is no need to exaggerate the value further. In 
fact, about 70 percent of MLB players earn salaries lower than the mean.

5.	 Standardized Mean Heights (The t-Distribution Family)15

Note: This activity is already published by the College Board on AP Central under 
“Teaching Resource Materials” in an article titled “Three Calculator Simulation Activities.” 
(http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/49152.html)

This activity introduces students to the t distribution family and unfolds in several steps.16

First, we will simulate heights of adult American males, assuming the population to be 
normal with mean 70 inches and standard deviation 2.6 inches, which is pretty accurate.

	 randNorm(70,2.6)

Then we simulate three at a time:

	 randNorm(70,2.6,3)

14. For example, see a description in Activity-Based Statistics by Scheaffer, Watkins, Witmer, Gnanadesikan, and Erickson. 2nd Edition, 
Key College Press, 2004. This activity will be discussed in the following article by Corey Andreasen.

15. Thanks to my teaching colleague Julie Graves for helping me develop this activity.

16. The syntax throughout this activity is that of the TI-83/84, the calculator models that are probably the most widely used in statistics 
classrooms. Of course, the activities may be done with any calculator or computer having basic random-number-generating functions. On 
the TI-8x calculators, the random-number-generating functions are located under the math → prb menu. The notation X ~ N(µ,σ) used 
in this document indicates that X is a random variable having a normal distribution with mean µ and standard deviation σ.
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On the TI you have to scroll to the right after doing this in order to see all three heights in 
the list. Now it gets a little bit tricky. The colon (same button as the decimal) can be used 
to separate commands that are entered on a single line. The output you see is the result 
of the last command. (For example, 1→X:X 1 1 would report back “2”.) Therefore, use 
the following command to (1) simulate three men’s heights, and then (2) compute the 
standardized z-score for the sample mean, given that the population mean is 70 and the 
population standard deviation is 2.6. The function mean( ) on the TI-83 is located under 
the 2nd-list-math menu.

	 randNorm(70,2.6,3)→L1:(mean(L1)-270)/(2.6/sqrt(3))

The reason the commands are separated by a colon rather than entered separately is to 
allow students to repeat the simulation quickly and easily simply by pressing the ENTER 
button repeatedly. The ENTER button, when pressed after no new commands are entered, 
reexecutes the last instruction line.

Have your students press ENTER a few times to get a feel for the sort of numbers it produces. 
Despite having studied the topic, many students do not immediately see that the numbers 
produced by this simulation should have a standard normal distribution. It helps to write on 
the board the same computation in correct notation, with µ and σ, and then substitute in 70 
and 2.6:

Now ask your students to press ENTER repeatedly, which will repeat the entire simulation 
many times. Anytime they see a number that is larger in magnitude than 3, they are to say 
it out loud. You are likely to hear an occasional “3.1” or “23.3,” but numbers much farther 
from zero will be quite rare. No students are likely to see any numbers greater in magnitude 
than 4.

The last step is to replace 2.6 in the expression above with stdDev(L1), a quantity 
that depends upon the “data.” This is equivalent to replacing σ of the population with its 
estimate s, computed from a sample. The function stdDev( ) on the TI-83 is located 
under the 2nd-list-math menu.

	 randNorm(70,2.6,3)→L1:(mean(L1)-270)/(stdDev(L1)/sqrt(3))

Sampling Distributions: The What-Ifs with Hands-On Simulation
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Once again, ask your students to say out loud any numbers they see that are greater 
in magnitude than 3. You will almost certainly hear several 4s, a 6, perhaps even a 
12—numbers that would be unheard of from a standard normal distribution. (Numbers 
greater than 12 are rare even in a t distribution with 2 degrees of freedom, but not with 20 
students simulating this 50 times or so each.)

Now do this yourself on the overhead calculator several times until you get a pretty large 
number, say 7 or larger in magnitude, and then stop. Ask your students what they expect to 
see in list L1. What makes the value of the standardized mean so big? There are two possible 
explanations: the sample mean is pretty far from the true mean of 70 or else the sample 
standard deviation is pretty small (or, more likely, both). After they’ve thought about it and 
perhaps given those answers, look in list L1. Very likely, you will find three numbers that are 
all at least an inch away from 70 inches, and all in the same direction, and they will likely be 
fairly close to one another, making the sample standard deviation, s, relatively small.

The point of this is to convince students that the distribution of the t statistic is more spread 
out than the normal distribution, and the reason is that you’re dividing by a random quantity 
s that may vary a lot when the sample size is small. The variability in s is what creates the 
heavy tails in the t distribution. The reason the distribution begins to look more normal 
when the sample size gets larger is that the variability in s decreases.

If you repeat this activity with larger and larger sample sizes, you should have fewer and 
fewer students saying large numbers out loud.

6.	� Baseball Players’ Height/Weight Relationship (Regression 
Line Slopes)

Students often fail to understand that when they construct a regression line on bivariate 
data, the slope of the regression line is in fact a sample statistic—and that it therefore has a 
sampling distribution. The reason of course is that the sample of data was only one sample 
that happened to be observed, and had the sample been different, the regression line would 
have been different too. This is true both when measuring bivariate data on a random sample 
of a population (as is done in this activity), as well as when measuring the response variable 
in a controlled experiment in which the explanatory variable is determined by experimental 
design. 

I am sympathetic with the students’ difficulty, and I have seen it every year I have taught 
AP Statistics. Students who are comfortable with the idea of a sampling distribution of 
sample means are less comfortable with the idea of a sampling distribution of regression line 
slopes. This activity is meant to make the latter more accessible.

An earlier activity involved sampling baseball players from a list of all MLB players (a 
complete population) and recording their salaries. This activity is very similar, and so it will 
be described in slightly less detail. The point is for students to recognize that the slope of a 
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regression line depends on what random sample was observed, and so it has a distribution. 
Furthermore, the distribution of regression line slopes is (under certain circumstances) 
approximately normally distributed.

First have your students sample five MLB players at random from the list:

	 SortA(randInt(1,866,5))→L1

As before, if a player is duplicated in their sample, they should get a new player or a new 
random sample.

Next, they record in lists L2 and L3 the heights and weights, respectively, of the players. 
Then they plot those heights and weights on their calculator and compute the regression 
line, where weight is the response variable and height is the explanatory variable. Then 
they note the slope of the regression line, writing it down somewhere. Finally, they repeat 
this several times each (as before, it would be nice to have about 100 sample slopes among 
all your students to get a nice-looking histogram). As the students finish, they come to the 
board and put their sample slopes on a class histogram, as X’s. For this activity, it makes a 
nice histogram if they round their slopes off to the nearest even integer. Below is a typical 
histogram of 100 simulated samples’ slopes.

It is particularly instructive if any students happen to get negative slopes. (This is quite likely 
to happen if you do 100 simulations.) Do students’ faces light up or show puzzlement as it 
dawns on them what is strange about this? If not, that is a red flag for you: The student may 
not appreciate the strangeness of the negative numbers in this distribution. The explanation 
for the negative numbers is that with samples of just n 5 5 MLB players, it is possible to get 
the occasional sample of five such that the heights and weights have a negative correlation. 
(This is much less likely with larger samples.) You might like to have a student who gets a 
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negative slope stop and share a scatterplot with the whole class of that particular sample’s 
heights and weights. 

The main point of this activity is simply to show that slopes have a sampling distribution. 
You could stop the activity right here. But if you want to carry it further, you could repeat 
the activity with samples of size n 5 12, and observe that the distribution of slopes is still 
centered on about 6 lbs/inch but is narrower. You are unlikely to see any negative slopes 
among 100 samples of size 12.

You also may remark that the distribution of slopes is approximately normal. This 
happens here because the heights and weights together have a bivariate distribution that 
is approximately “bivariate normal.” This topic is beyond the AP syllabus, but among the 
consequences of bivariate normality are the three main assumptions we do require students to 
know are necessary for inference: (1) a linear relationship between the conditional mean of Y 
given X, and X itself, (2) normally distributed Y values around those means, and (3) constant 
standard deviation around those means conditioned on any particular X. And incidentally, 
it is the case that if those conditions are met, then the sample regression line slope is an 
unbiased estimator of the population regression line slope. In the case of the baseball players’ 
heights and weights, the population regression line has a slope of 5.5 lbs./inch.

When we look at output from a computer that has performed regression based on a 
sample, we usually get, in addition to the slope of the regression line, an estimate of its 
standard error. It is probably not best to discuss this with your students until they are more 
comfortable with this topic, but a brief discussion might proceed as follows: That estimate 
of standard error is not equal to the standard deviation that you see in the histogram of 
slopes. The histogram of slopes that your class produced has a standard deviation that is 
unknowable when all you have is a single sample of data. You can estimate that spread 
using the data in your sample, and that’s what the computer output gives you. But it is only 
an estimate, and it is variable—just as with univariate data, you can only estimate σ with s 
from a particular random sample. And just as inference in the context of univariate data 
required the t-distribution family, so inference in the context of bivariate data requires the 
t-distribution family, and for exactly the same reason: The standard error of the slope is 
estimated, not known.

7.	 Worm Species (The Goodness-of-Fit Test)

It is assumed at the beginning of this lesson that students are already familiar with the 
structure of hypothesis tests. (It is not actually required for the lesson, but if the students are 
familiar with hypothesis tests, then the class may discuss results with terms and phrases such 
as “p-value” and “reject the null hypothesis.”)

Begin by preparing a bag containing four colors of gummy worms: 15 yellow worms, 
35 blue worms, 15 green worms, and 35 red worms. Then tell your students—without 
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showing them what is in the bag—that you claim the bag contains 35 percent yellow worms, 
15 percent blue worms, 35 percent green worms, and 15 percent red worms. Write that claim 
on the board.

Next, tell your students that you are going to draw 10 worms at random from the bag. Do so 
or have a student do so, and write the results on the board. Hopefully, there will be between 
the claim and the data a discrepancy that is dispersed over all four colors. One goal of this 
activity is for students to understand that sometimes observed data may not differ from a 
claimed distribution in any single category sufficiently to convincingly reject the claim; but 
that over many categories, the cumulative discrepancies may yet convince.

Now ask the students whether they believe your claim. Some will say they do not. Ask them 
why. They will likely respond that the data don’t “fit” the claimed distribution, or that the 
data “deviate too much” from the claimed distribution, or with some similar statement. 
You should then ask, “Oh? By how much do these data deviate from the claim?” They will 
have to think for a moment, and they may come up with different answers. This is important, 
for you want them to be thinking about how to quantify the discrepancy between a claimed 
distribution and an observed distribution within a sample. It is not quite as straightforward 
as quantifying the discrepancy between a claimed proportion and a sample proportion, 
for then the most natural and obvious measure is the difference between the two (or, with 
more sophistication, the standardized difference between the two). But now there are four 
proportions to reckon with.

Allow the students to discuss freely their different measures of discrepancy. Do not suggest 
to them the chi-square statistic, and if any student knows of it already, suggest that student 
remain silent so as not to stifle the creative and constructive discourse of the others. (For 
example, you might draw a χ2 on the board and ask any students who have seen this to “keep 
the secret.”) Often students will propose the sum of the absolute values of the differences in 
the proportions. Or, having studied variances, students may suggest the sum of the squares 
of the differences in the proportions. Or they may suggest the average of the absolute 
deviations. Occasionally they come up with something a little more exotic, but they will 
almost certainly not come up with the chi-square statistic, and that’s fine. That isn’t the point 
of this activity.

Have the class discuss the different proposed discrepancy measures and agree upon one 
of them to continue with. It doesn’t really matter what they pick, so long as it is a quantity 
that is larger when the distributions have a larger discrepancy and smaller when they have a 
smaller discrepancy. You might write on the board, “D 5” and their measure, either in words 
or in symbols.

Next, have the students calculate the value of the discrepancy measure for the claim and the 
data with which you began class. For example, if you observed 1 yellow, 4 blues, 2 greens, 
and 3 reds, the measure of discrepancy might be:

Sampling Distributions: The What-Ifs with Hands-On Simulation
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D 5 sum of absolute values of differences between claimed proportions and actual 
proportions

D 5 |0.35 2 0.1| 1 |0.15 2 0.4| 1 |0.35 2 0.2| 1 |0.15 2 0.3| 5 .25 1 .25 1 .15 1 .15 5 0.8

Next ask your students, “You said earlier that you didn’t think my claim was true, and 
the reason you gave was that the discrepancy between the claimed distribution and the 
distribution of the data was ‘too large.’ Now we’ve measured the discrepancy and found it to 
be 0.8, according to your own measure of discrepancy. How do we know whether this is ‘too 
large’ or not? Just how large is ‘too large,’ anyway?”

If your students are accustomed to doing simulations, they may suggest one at this point. 
If not, you will have to suggest it to them. Either way, you should allow them to figure out 
how to do the simulation themselves. This isn’t hard. They need to be provided with bags 
and tokens (more gummy worms, or some other token, like plastic beads or kindergarten 
“counters”17) and allowed to put tokens in the bag according to what they think the 
simulation requires. Before beginning the execution, however, you should verify that they 
have it right: The bags need to contain tokens according to the claimed distribution of 
colors. Additionally, they need to have enough tokens in their bag that their sample doesn’t 
represent a sizeable chunk (say, more than 10 percent) of it. One hundred tokens (as you 
used yourself) will do for samples of size 10. To execute the simulation, they then need to 
do as you did at the start of class, drawing 10 tokens from the bag and calculating the value 
of D (the “discrepancy score”) for the sample. Allow each student to do several simulations 
while you draw a number line on the board with tick marks for every tenth. (Or at other 
appropriate locations, depending on what discrepancy score your students came up with. It 
might be worth having a very brief discussion with the students about the range of possible 
values of their discrepancy score.)

As the students complete their simulations, they should come to the board and mark x’s over 
the scores they obtained, constructing a histogram of the distribution of their discrepancy 
score under the claimed distribution. It should then be evident just how “unusual” the actual 
observed value of 0.8 (or whatever) was, and a rejection of the claim can be more rationally 
justified. A p-value can also be estimated based on the proportion of simulations that 
resulted in a discrepancy score greater than the observed one. 

For homework, students should then go home and read in their texts about the chi-square 
statistic and come to class prepared to teach it or discuss it. I like to pick a random student 
to teach a chi-square goodness-of-fit lesson for 5 or 10 minutes. Essentially, I want them 
to say that the process is exactly what they did in class, only with a different measure of 
discrepancy. The extent to which you discuss the rationale behind the chi-square statistic 

17. I prefer to use different objects for the real data (the 10 sampled worms at the beginning of class) and the data sets that they simulate 
through multiple draws from a known population they constructed. By making them different you emphasize the fact that what they are 
doing is a simulation, not collecting additional real data.
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with your class is then up to you. This simulation activity gets them in the right frame of 
mind to understand the concept behind it.

You will note that although this activity is meant to introduce the chi-square goodness-
of-fit test, a different and unconventional statistic is actually used for the activity. This is 
an example of a constructivist lesson. Although you guide the activity and can be pretty 
confident how it will turn out, students contribute the crucial elements themselves. The 
chi-square statistic is not a natural one, and indeed it would be confusing for many students, 
for not only is it strange in its construction, it isn’t even obvious that it is a measure of 
discrepancy between the data and the claimed distribution at all. More to the point: this 
activity really isn’t meant to teach about the chi-square statistic. It is meant to teach students 
about the goodness-of-fit test and about the sampling distribution of a statistic that measures 
the discrepancy between two different categorical distributions. The actual computation of 
the chi-square statistic is a burden and should be left to calculators and computers.

Some teachers worry that students will take away the wrong lesson from this activity; that 
they’ll remember the statistic D and think they need to know it for their next test. I think 
exactly the opposite is true: if students are taught the chi-square statistic, they’ll think its 
computation is the important part of the lesson. The important thing to focus on is the 
sampling distribution of a statistic that measures a discrepancy between a claimed categorical 
distribution and some data. If students are told explicitly that their formula for D was good 
for the activity because of its simplicity but now needs to be replaced with the formula that 
scientists really use (i.e., the chi-square statistic), they suffer little confusion.18

Conclusion

Sampling distributions are less accessible than distributions of data because they involve 
summary statistics rather than direct measurements, and in practice they invoke samples 
other than the one that was actually observed. But helping students to understand sampling 
distributions need not be difficult. Following these recommendations will help:

	 •	 Look at sampling distributions early and often. Have students make boxplots and 
histograms of sampling distributions early in the year, before you even name them, 
and continue looking at them occasionally throughout the rest of the year. Even 
after students have mastered the concept of a sampling distribution, they may need 
reinforcement with more activities to grasp that the chi-square statistic or the slope of a 
regression line has a sampling distribution.

	 •	 Use hands-on simulations. Students will grasp sampling distributions better if they 
get to draw samples themselves, rather than just looking at pictures of sampling 
distributions in a text or on a computer screen. Ideally, you would like them to progress 

18. One might very reasonably ask why anyone does use the chi-square statistic? What’s wrong with the D formula that we presented here 
in this activity? There are two reasons. First of all, the chi-square statistic has a distribution that is not very dependent upon the actual 
distribution of the categories in the population, only upon the number of categories there are. “D” here does not have that property. 
Second, the chi-square statistic results in a more powerful test—power in the technical sense, i.e., more likely to reject a false null. The “D” 
statistic here gives too much weight to relatively infrequent categories, making it too easy for other distributions to “masquerade” as the 
one in the null if all you see is D.
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toward being able to simulate a sampling distribution using applets or computer 
software such as Fathom. Then many more simulations can be done, and can be done 
faster. But it’s better to start with something more transparent, in which each sample is 
simulated, and its corresponding statistic computed, by itself. (The next article in this 
collection addresses the use of technology in teaching sampling distributions.)

	 •	 Have your students construct class histograms, in which you draw an axis on the board 
and they, individually or in pairs or small groups, contribute “Xs” stacked on top of one 
another. Don’t worry about the Xs being perfect or all exactly the same size, and don’t 
worry about a vertical scale. You’re mainly after the fact that samples produce a sampling 
distribution. You can discern its shape, center, and spread without a vertical scale.

	 •	 Don’t let your students get hung up on how many simulations they are performing. 
This number is not important. (That’s another reason not to use a vertical scale on 
your board histograms.) The only thing you need to do is make sure there are enough 
simulated values to make a clear histogram. Usually 100 is about right.

	 •	 Don’t worry that these activities are taking too much class time. Of course you should 
have a plan for the year, but the inclusion of these activities in that plan will not only 
help students understand the concepts better than lectures, they will actually save you 
time as well, because they will find future topics involving sampling distributions so 
much more straightforward.

	 •	 If you are not careful, some students will draw an incorrect conclusion from many 
classroom simulation activities: they will think that taking many different random 
samples is what is done in actual practice. You should be on the alert for signs that stu-
dents are thinking this way. Fortunately, it is not hard to lead them away from that no-
tion. Just a clear, straightforward statement may do the trick: “Remember that what we 
did was only a simulation. We wanted to see what sorts of sample statistics might have 
resulted from different random samples. In practice, how many samples do you get?” 
(Hopefully, students respond with confidence, “One!”) “Right. One. We are playing the 
‘what if ’ game to see what sorts of results are ‘typical’ by taking lots of different ‘pretend’ 
samples.”

One of the delights of teaching AP Statistics is that it is so hands-on. I hope this set of 
activities has given you ideas about new things you can do with your students that are both 
engaging and enlightening.



	 37

Sampling Distributions: The What-Ifs with Technology
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Sheboygan, Wisconsin

Two pedagogical reasons one might have for having students generate simulated sampling 
distributions in class are: 

	 •	 So that students can better understand what the individual values in a sampling 
distribution represent. Because sampling distributions are the basis for inference 
procedures, understanding them is imperative. Simulated sampling distributions 
generated by the students themselves can be seen to agree with theoretical results, 
helping students trust and have a greater understanding of those theoretical results. 

	 •	 In situations where a theoretical sampling distribution is not known to the students, the 
simulated sampling distribution can be used for inference directly.

While it is crucial that students experience concrete simulations of sampling distributions, 
given the usual class time constraints, it is difficult to gather many values of a sample 
statistic if one is limited to rolling dice and drawing colored counters out of bags. Doing 
simulations by hand provides students with an irreplaceable understanding of what a 
sampling distribution is, but for a sampling distribution to be useful in teaching practice, 
and to get precise information from simulated sampling distributions, many samples are 
needed—perhaps thousands or even tens of thousands. Computers and calculators provide 
a means for gathering many samples, calculating the sample statistics quickly and efficiently, 
and displaying the results graphically. 

Below, activities will demonstrate ways to use technology to provide a deeper understanding 
of sampling distributions and their importance in statistics. While these activities use 
computer technology to generate many samples and their statistics quickly, it is instructive 
to begin by having students use the concrete materials as described in the previous article. 
Then, before jumping to a large number of samples, the technology can be used to reproduce 
what the students did by hand. In doing so, students can see that the results from the 
technology do, indeed, match the results they got by hand. This helps students trust that the 
technology is mimicking the same process. If not used carefully, this same technology can 
obscure processes, presenting an appearance much like a mysterious “magic black box” to 
many students, not unlike the look and feel of mathematical theory. It is also instructive, 
when possible and appropriate, to have students program the simulations themselves to 
make the entire process more transparent.

Using Sampling Distributions to Detect Evidence of Discrimination

Because hypothesis testing requires a fair amount of background knowledge, it is usually 
among the later topics covered in the AP Statistics course. But a hypothesis test is really 

Sampling Distributions: The What-Ifs with Technology



38

Special Focus: Sampling Distributions

designed to ask a fairly simple question: If we were to take as many samples as we wished, 
assuming the null hypothesis is true, about what proportion of the sample statistics would 
be at least as extreme as the one we observed? To illustrate this idea, we will use a legal case 
as an example.

Westvaco Corporation, a producer of paper products, laid off a large part of the workforce 
in its envelope division in 1991. Robert Martin, a 55-year-old engineer who was one of those 
laid off, brought suit against the Westvaco Corporation for age discrimination (Martin v. 
Envelope Division of Westvaco Corp., CA No. 92-03121-MAP, 850 Fed. Supp. 83 (1994)). 
In most discrimination cases, statistical analysis can shed some light, and this case is no 
exception.

The original Westvaco data are:

Ages in Years of Laid off and Retained Westvaco Employees

Laid off 55 55 64
Retained 25 33 35 38 48 55 56

The layoffs at Westvaco occurred over five rounds among both hourly and salaried 
employees. In this paper, we will look at only one round of layoffs: the second round of 
layoffs of the hourly workers. The result of this round is shown in the comparative dot plot 
in Figure 1. The mean age of the three workers laid off in the second round is 58 years, 
while the mean age of those retained is 41.4 years. Does this disparity support a claim of age 
discrimination?

At first students will simply want to compare the mean age of those laid off to the mean 
age of those retained. This is a reasonable place to start, but it does not answer the question 
of whether there is age discrimination—there is no standard with which to compare that 
difference in mean ages! After the mean difference in ages is calculated, we still don’t know 
whether the difference is large enough to accuse Westvaco of discrimination. 

The essential question is “How likely is a difference in mean ages this large (or larger) if 
the layoffs were made without regard to age?” A layoff of randomly selected workers could 
be appropriately modeled by randomly selecting ages of the workers. Of course, Westvaco 
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did not randomly select the workers—possibly they used a nondiscriminatory scheme of 
some sort. Workers were selected for layoffs based on some criteria, and that criteria may be 
associated with age. For example, workers with obsolete skills may be laid off first, and these 
might be the older workers in general. In that case we would expect to see a higher mean 
age for those laid off. It is also possible that a difference in means this large or larger could 
reasonably be attributed to chance; Robert Martin, the plaintiff, has a very weak case at best. 
On the other hand, if this difference is too large to be attributed to chance, Westvaco will be 
asked to explain their actions. 

How might we use simulation to help determine whether the results of the layoff can be 
reasonably attributed to chance? One approach would be to perform a simulation to analyze 
the results of chance layoffs. We could randomly select from the population three workers to 
be laid off, calculate the mean age from that sample, and compare that simulated mean to the 
mean of those actually laid off (58 years). Then we repeat this process many times and create 
a distribution of the sample means. 

Evidence of discrimination would require a comparison between the mean age of those laid 
of to the mean age of those retained. However, because we know the age of all 10 people 
involved in this round of layoffs, we could calculate both means from the one sample. Rather 
than work this entire calculation into the simulation, we simplify it by considering only the 
mean age of those selected for layoffs.

We begin by having students design this simulation on their own and do a few trials. There 
are many different presentations of simulations, with a variety of steps and sequences in 
the literature. We will use a simple four-step simulation process: Assumptions, Model, 
Repetition, and Conclusion. At each step in the simulation, students will fill in the specifics 
of the problem at hand. Now let’s use this model to tackle the Westvaco simulation!

Assumptions: The ages of the three workers are selected randomly and independently.

The next phase is the construction of a “model,” or representation of a random selection 
process. The model that follows is one example. The randomization could be done in one 
of several different ways, including a random digit table, a random number generator on a 
calculator, rolling a 10-sided die, etc.

Model:

In this phase, we construct a model, or representation of a random selection process that 
mirrors our assumptions and the “structure” of the problem. The necessary randomizing 
could be done in one of several different ways, including a random digit table, a random 
number generator on a calculator, rolling a 10–sided die, etc.

1)	 Write the ages of the 10 workers {25, 33, 35, 38, 48, 55, 55, 55, 56, 64} on identical index 
cards.

Sampling Distributions: The What-Ifs with Technology
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2)	 Shuffle the cards and select three of them without replacement. 
3)	 Record the mean of the ages on the three cards.

Note that the process above completely describes one run of the simulation, including 
the calculation of the sample statistic being recorded. The mention of whether or not 
replacement is allowed is important whenever sampling is done, and thus it is important that 
this be specified in every simulation model involving sampling.

Repetition: Repeat this procedure a large number (say 25) times. This set of 25 runs 
constitutes the simulation. Record the results and analyze the resulting data from the 
repetitions. With sample sizes of 25, a dotplot is particularly effective.

Conclusion: Analyze the data and determine the proportion of sample means that are 58 
or over and decide whether this indicates that the three ages chosen for layoffs are unusual 
enough to ask Westvaco to explain itself.

Having students articulate the four steps helps them to see what is essential to that 
simulation, since as many trials of this are required for students to understand what a plot 
of the sampling distribution communicates about the “right” number of replications. One 
possible strategy is to have the students do simulations in small groups until each group has 
accumulated some number of means, then have the group come to the board and contribute 
their sample means to a single class histogram that you collectively build on the board. Then 
you can lead the class in a brief discussion with such questions as “What’s a typical number 
here? What does that mean? Does it appear that 58 is a typical result?” (Your focus here 
should be on their development and communication of what they believe a “typical” age 
might be if the layoff process was, in fact, unrelated to age.) After you are confident that they 
understand what the sampling distribution shows, then lead them to the recognition that a 
simulation involving hundreds or thousands of random samples would give a much clearer 
picture of the sampling distribution of the mean for this population. 

Because effective simulation requires a large number of samples, we recommend the use of 
statistical software. Programs such as Minitab, DataDesk, and JMP will perform simulations 
effectively. For purposes of this article, we will use the program Fathom, by Key Curriculum 
Press (www.keypress.com). Fathom was designed from scratch to be a teaching tool, and 
it forces the simulation designer to be very careful and explicit in specifying the steps of a 
simulation. Some examples of simulations using other technologies will be provided below. 
Our discussion will provide a generic description of what we are doing and why in addition 
to presenting specific Fathom directions so that the reader can follow AND participate. 
(A free trial version of Fathom is available at their Web site.) Our first activity will explain in 
detail how to set up and run each step of the simulation using Fathom.

One last bit of advice before proceeding: The computer screen can get rather cluttered when 
setting up a simulation. Some forethought into how objects will be placed on the screen can 
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help students gain insight into the structure of the simulation. But a poor or cluttered screen 
can make it difficult for students to decipher.

When we change to using technology for simulation, we can see some changes in the design: 
The random selection will be done on the computer rather than using slips of paper, and we 
will do many more than 25 trials. 

In Fathom there is a row of icons above the document workspace called the “tool shelf.” 
You begin setting up the model by dragging a new case table from the tool shelf to the 
document workspace. While not actually necessary, you may wish to drag the windows to 
the positions shown in the diagrams for the sake of clarity in following our presentation. 
Type the attribute name “Age” where it says <New> in the table and hit Return, then enter 
the 10 ages into the table. A gold box called the Collection will appear. To help students 
understand the upcoming steps in the Fathom execution of the simulation, drag the lower 
right corner of the box as shown in Figure 2 so the icons for each worker can be seen.

Sampling Distributions: The What-Ifs with Technology
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The next steps will change the caption under the icons to show the workers’ age rather than 
the generic “a case” that appears as a default. This is not needed for the simulation to work 
but is less abstract for students and thus pedagogically helpful when the sample is selected. 
Double-click inside the frame of the collection to get the inspector for the collection. Select 
the Display tab as shown in Figure 3.

To the right of Caption, under Formula, double-click to open up the formula editor, and 
type “Age” as in Figure 4 on page 43. Then click OK and close the inspector.

In the next few steps, we will explain how to tell Fathom to select a sample of three workers 
without replacement. Click once on the collection so it is outlined in a blue frame, and from 
the Collection menu, select Sample Cases. A second box appears, this one containing blue 
spheres and labeled Sample of Collection 1. Drag this box open as you did for the original 
collection. You will see 10 icons of workers sampled from the collection. To change this to 
a sample of three workers, double-click in the frame of this sample collection to open its 
inspector as in Figure 5 on page 44.

Click the check box to turn off With Replacement and change the number of cases to three 
as shown. Then click Sample More Cases. You should see three icons representing three 
workers in the sample collection frame. Click Sample More Cases again, and you will see 
another sample of three workers.

We will now tell Fathom which statistic to calculate—in this case, the sample mean. Students 
could calculate the mean age of the sample manually since the three ages are displayed, and 
it is worthwhile to have them do this for one sample. It encourages them to trust that Fathom 
does the same thing they did with index cards. To have the software calculate the mean, you 
will define a Measure. Double-click within the frame of the sample collection to open the
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inspector, then select the Measures tab. Name the measure SampleMean and double-click in 
the formula box to open the formula editor. Type “mean(age)” into the editor as in Figure 6 
on page 45 and click OK.

The sample mean displayed in the inspector should match the hand calculation.

Now we have defined the model and moved to the Repetition phase of the simulation. Close 
the inspector (the window where you just entered the measure SampleMean) and click 
once on the box of the Sample of Westvaco collection. Under the Collection menu, select 
Collect Measures. Now a third box will appear, a collection of the means of the samples. 
Double-clicking on Measures of Samples of Collection 1 box will open the inspector, 
where you can determine the number of samples you want to collect. It will be instructive to 
begin with 1 sample mean. Change the number of measures from 5 to 1 and select Replace 
Existing Cases. Click Collect More Measures. Notice that the animation shows a blue 
sphere bouncing from Collection 1 to the Sample of Collection 1 showing the sample
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being taken. A green sphere then bounces to the Measures from Sample of Collection 1 
showing the mean of the sample being recorded. Placing the Measures box below the sample 
collection forces the spheres to go in different directions, making clear the two steps: collect 
the sample and record the mean.

To plot the sample mean on a dotplot, drag a new graph from the tool shelf to the document. 
In the inspector for the Measures from Sample of Collection 1, select the Cases tab 
and drag the attribute SampleMean to the horizontal axis of the graph. (Drag the word 
“SampleMean,” not the number here.) Select the Measures box and drag the lower right 
corner just enough to display the “Collect More Measures” button. The screen should now be 
arranged as shown in Figure 7 on page 46.

Now, every time you click “Collect More Measures,” you will see a new sample being 
collected, a mean being recorded, and the mean being plotted on the graph. Note that the
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mean shown in the inspector matches the position of the plotted point. Do this (or have 
students do this) a few times. Then, in the inspector, click on the Collect Measures tab and 
deselect “Replace existing cases.” Then go back to the Cases tab. Collect More Measures and 
see that the new means are now added to the old plot.

One benefit of having both steps in this process visible is that there is a clear distinction 
between the sample size (3) and the number of samples, which keeps going up as you Collect 
More Measures. Because this distinction is often unclear to students this merits a bit of 
classroom discussion. In the window for the sample, you see three blue spheres. That is the 
sample size. Each dot in the plot represents a different sample.

Now it’s time to take a bunch of samples quickly. In the inspector, click on the Collect 
Measures tab and change the number of measures to 1,000. Turn off the animation to speed 
things up and click Collect More Measures. (Students seem to enjoy setting the number of 
samples to 10,000 and watching the animation—for about ten seconds. It quickly gets pretty 
boring to watch—trust me!)
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Finally we arrive at the Conclusion step, where we determine the typical proportion of 
sample means that are at least 58. Drag a Summary Table from the shelf to the document. 
In the Measures inspector, click the cases tab and drag the attribute name SampleMean 
to the row title cell in the summary table. The mean is automatically calculated, but you’re 
interested in the proportion of sample means that are 58 or greater, not the mean. Double-
click on the measure S1 5 mean( ) and change the formula to proportion(SampleMean 
≥ 58) (hold down option as you type > to get ≥). In the sample shown in Figure 8, 0.048, 
or about 4.8 percent, of the sample means were 58 or more.

After this long and detailed procedure it is important to review with students what has 
just been accomplished and what they are looking at. Taking many samples is playing that 
game of “What If?” In reality—that is, in the context of the case—we have only one sample 
to look at. As mentioned earlier, the actual “real life” sample was not selected randomly 
because people were selected for layoffs based on some criteria that may or may not be 
independent of age. But what if we could repeatedly select samples? Would an average age of 
58 be reasonably likely if the selection process was independent of age? If the sample statistic 
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would not be at all unusual with random sampling, Westvaco is off the hook. On the other 
hand, if this sample would have an unusually high average age compared with other random 
samples, we might reasonably ask Westvaco to explain what layoff selection procedure they 
used and let the court determine whether it was lawful.

According to the simulated sampling distribution shown here, there is a little less than 
a 5 percent chance that a result at least as extreme as this one would result if age was 
unrelated to the criteria for layoff. Such an extreme value would not usually be thought 
of as a common result and seems to provide more evidence for the plaintiff than for the 
defendant. 

An activity like this can be done early in the AP Statistics course. An early look at sampling 
distributions allows students to explore the logical principles that underpin statistical 
inference and start learning about the big questions of statistics before the approximation 
techniques that depend on the Central Limit Theorem are introduced.

The German Tank Problem with Technology

In the previous article we introduced the German Tank Problem. Here we will once again 
use Fathom, focusing intently on how students can use computer technology to define their 
own statistics and simulate sampling distributions of those statistics.

Earlier in this section we alluded to the problem of the “mysterious black box.” If students 
do not understand what is happening “behind the scenes” in a computer simulation, then 
they may follow your instructions correctly, click all the right buttons, and see exactly the 
sampling distribution they’re supposed to see and yet still not understand what it represents. 
A nearly failsafe way to avoid this problem is to have them construct the simulation process 
themselves. If students are working in groups, you should try to be sure that the students 
doing the construction on the computer are not those who already understand sampling 
distributions well but rather those students who do not. 

When the students construct the simulation, they do so in a way that allows them to see the 
results of each step so they understand what the computer is doing. The procedure described 
below may not be the most efficient way to generate the sampling distribution, but it is very 
instructive.

To perform the German Tank simulation, we naturally need to create a population of tanks. 
Following along with your computer, open a new Fathom document and drag a New Table 
from the shelf to the document. Name the attribute “TankNumber.” Because each row in a 
case table is numbered with a caseindex, the formula TankNumber 5 caseindex will specify 
the creation of a list of integers, 1, 2, . . ., n. Single-click on the word TankNumber to select 
the attribute and from the Edit menu, select Edit Formula. Enter the formula “caseindex.” 



	 49

The text of the word will turn red to indicate that Fathom recognizes the command as in 
Figure 9 below.

Click OK. Notice that no tanks show up in the table. You created a formula to determine the 
values for any cases (tanks) you have, but you have not actually created any tanks. To do this, 
select New Cases under the Collection menu. In the dialog box that opens, type 342. This 
will create 342 tanks as in the previous section, and a gold box (the collection) filled with 
little spheres will appear on the screen.

The next couple of steps are for illustrative purposes and mimic the steps in our Westvaco 
simulation. They are not absolutely necessary for the simulation but are important 
pedagogically because they help students understand the simulation process. First, under the 
gold box, double-click on the text “Collection 1” and, in the dialog box that opens, rename 
the collection “Tanks.” Next, select the collection and drag the lower right corner of the 
blue frame so you can see the icons. Each ball represents one tank, and you should note that 
each tank is labeled “a case.” It is more instructive to have each case labeled with its number 
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because it will be easy to see which tanks were selected for the sample. To change this label, 
double-click on the collection to open its inspector and select the Display tab. To the right of 
Caption, double-click in the Formula box, and in the formula editor, type in TankNumber 
as in Figure 10. 

The caption for each icon in the collection will now show the number of the tank it represents. 
Close the inspector and minimize the collection to an icon by dragging the lower right corner.

To select a sample, single-click on the collection so the blue frame appears. Then, from the 
Collection menu, choose Sample Cases. A new blue box will appear, and you should see 
a blue ball pass from the collection box to the sample box to show that a sample is being 
selected. Single-click on the sample box and then drag the lower right corner of the frame 
until you can see all 10 balls in the sample. (Ten is the default sample size.) Now you can 
again see why we changed the captions: It is much more instructive to be able to see which 
tanks were selected when we do the simulation.

To change the size of the sample, double-click somewhere inside the sample frame to open 
the inspector for the sample. Change the number of cases to 7, turn off With Replacement, 
and click on Sample More Cases as in Figure 11 on page 51.

Now you can see the sample of seven tanks. Click the Sample More Cases button above the 
sample, and a new set of seven tanks will appear. I typically allow students to do this several 
times to see the repeated sampling. 

In the classroom, students can get lost in the steps of this process so it is good to remind them 
the purpose of our activity. We want to estimate the number of tanks in the collection based 
on one sample. A sample statistic will be used to estimate the population maximum, and in 
this context the formula can technically be referred to as an estimator. Unlike the situation 
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in World War II, we will have the opportunity to take many samples from the population. We 
will also be able to check our answers because we know the size of our population. 

Some typical estimators were introduced in the earlier article of this Focus chapter. Students 
can calculate one or all of these estimators, or others they create, for each sample. To do 
multiple estimators, reopen the inspector for the sample (double-click somewhere in 
the sample), and click the Measures tab. Then enter the name of the estimator, such as 
“Double_Mean” for double the mean. (Fathom does not allow spaces in names of attributes 
or measures.) Double-click in the cell for the formula and type in 2*mean(TankNumber). 
Figure 12 on page 52 illustrates how to enter formulas for the nine estimators described 
earlier. Note that the name of the estimator can be different, but there are restrictions on the 
symbols that can be used. The formula is strict in its syntax.

Have students look at the numbers selected in the sample (the captions on the icons) and 
calculate their estimator with a calculator so they can compare to the result given by the 
software. This will reinforce trust in what the computer is doing as well as allow students to 
check for errors in the formula they entered. 
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Fathom provides a quick and easy way to compare the estimators for any given sample. Click 
Sample More Cases, and we can see the estimate each of these would provide for that sample. 
Repeatedly generating new samples allows students to see how the different estimators 
relate to each other, and they can get a feel for which tends to be closest to the population 
size of 342. They can play the What if game many times at once. “What if this were our 
sample? How would my estimator have performed? How would the others have performed?” 
Students can try to see if any of the estimators are consistently near the correct value, 
consistently too high or too low, etc. But we are interested in a more global way to look at 
the estimators. 

We want to know which sample statistics would be the most reliable in predicting the 
population maximum. To assess this reliability, we need to see how the distribution of each 
of these statistics, used as estimators, behaves. (In the language of Fathom these estimators 
are called measures.) In order to understand the estimator’s behavior, we need to collect 
some samples and calculate some estimates.

Single-click on the sample so the blue frame appears, and from the Collection menu, select 
Collect Measures. A blue sphere passes from the collection to the sample, showing a sample 
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being collected, then a green sphere passes from the sample to the newly formed measures 
box to show each set of estimators being collected. Double-click on the green measures box 
to open its inspector, set the number of measures to 1000, turn off the animation, and click 
Collect More Measures. 

Click the Cases tab to see the results of each sample. The arrows in the lower left corner 
allow you to scroll through them one at a time. To create a picture of the distribution of one 
of the estimators, drag a new graph from the shelf to the document and drag the name of 
the estimator from the inspector to the horizontal axis of the graph. To plot the mean on the 
graph, click once on the graph to select it, then from the Graph menu, select Plot Value. 
In the formula editor, type “mean( ).” You could also display the mean plus and minus one 
standard deviation. Select Plot Value again and type “mean( ) 1 s( )” and again with 
“mean( ) 2 s( ).” You can compare the different estimators by dragging each name to the 
horizontal axis and dropping it on the “plus” sign that appears as the axis is highlighted. 
Then you can Plot Value and type 342 to display the population maximum to see how each 
estimator performed. You can change the bin width and the scales by double-clicking on the 
graph and editing the Properties. Figure 13 has a bin width of 20.

Now is the time to discuss some qualities of a good estimator. Double the mean, double 
the median, and maximum plus minimum all seem to be centered at the population 
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maximum, and students will see this as a desirable quality. Students also seem to recognize 
the benefit of a sampling distribution with a smaller spread. This is an ideal time to 
introduce the term unbiased estimator as an estimator whose average is the population 
parameter, and to confirm that this and a small spread are important qualities in an estimator. 

The Central Limit Theorem

One of the most important and useful topics in an introductory statistics course is the Central 
Limit Theorem, which says that the sampling distribution of the sample mean becomes more 
nearly normal in shape as the sample size increases. This is the basis for the large sample 
inference procedures for means and proportions we teach in AP Statistics. 

Helping students develop an intuitive feel for this is an important part of our teaching 
strategy. An activity developed by Ann Watkins and Richard Scheaffer in Activity-Based 
Statistics does this quite well, especially when technology is employed to allow many samples 
to be gathered quickly. What follows is a modified version of their activity.

I have a bin of over 800 pennies in my classroom and also have their dates in a Fathom file. 
Early in the year I tell students that when they walk into the room, they are to reach into the 
bin, give it a good mix, and take out a penny. They then plot the age of the penny on a sheet 
of chart paper I have on my wall. Every student does this every day for several weeks, and we 
watch the dotplot develop. 

After three weeks or so I ask them to draw four pennies, calculate the mean of the ages, and 
record that on a second axis that I place below the first. Later we do samples of nine pennies. 
By the time we are ready to introduce the CLT, we have some nice dotplots ready to examine. 
Students see that the spread of the sampling distribution becomes smaller and the shape 
becomes more symmetric, but it takes many, many samples to really see the convergence to 
near normality. That’s where the technology comes in. 

Using statistics software, students create a histogram of the penny ages with the mean marked 
on the plot. They also create a summary table showing the mean and the standard deviation of 
the population. Then we duplicate the dotplots they did by hand to see that the plots created 
by the technology match what they did by hand. This helps students to understand what the 
technology is doing and to trust that it matches reality. The plots below show the population 
and the means of 200 samples each of size 1, 4, and 9. It is good to take a moment to remind 
students how these plots were created. A sample was selected, the mean age calculated and 
plotted. Use this to remind students of the difference between n (the sample size) and the 
number of samples. Also point out that the center of the distribution doesn’t change much, 
though the shape becomes more symmetric and the distribution less spread out.

Then, to save time, pull up a document prepared ahead of time. The students have seen how to 
create these distributions and that they match reality, and are now ready to look at the patterns 
in the next set of plots and summary statistics. Figure 14 contains a histogram of the population 
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of penny ages along with a summary table showing the mean and standard deviation, as well as 
plots and summary tables for 2,000 samples each of size 1, 4, 9, 16, 25, and 100. The reason for 
choosing sample sizes that are squares will be apparent in a moment.

Students had already observed that the center doesn’t change much. The numbers in the 
summaries make this clearer. There is virtually no change in the mean of the means, which 
we symbolize as, irrespective of the sample size. It was also clear, even from the plots they 
created by hand, that the distribution became more symmetric and mound-shaped—more 
nearly normal—with increasing n. This is the Central Limit Theorem in action! Notice 
that the population distribution was skewed to the right. When the sample size was one, the 
sampling distribution looked very much like the population distribution. As we used larger 
samples, the shape of the sampling distribution gradually changed from the skewed shape to 
a very symmetric shape. 
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Now look at the spread. A quick observation shows that the standard deviation decreases as 
the sample size increases, but the summary tables allow a more detailed examination. Create 
a table of sample size and standard deviation of the means, σ​_ x​ .

Sample Size Standard Deviation Observation
    1 11.56 Very close to σ
    4   5.87 Very close to σ/2
    9   3.76 Very close to σ/3
  16   2.83 Very close to σ/4
  25   2.26 Very close to σ/5
100   1.14 Very close to σ/10

It doesn’t take long to observe that the standard deviation of the means is approximately 
equal to the population standard deviation divided by the square root of the sample size. 
In symbols:

σ​_ x​  5 ​  σ ___ ​ n ​

 ​This can take some time to sink in, so you should save this document for the next time a 
student asks why you divide by the square root of the sample size. You may also wish to have 
this document available when the time comes to discuss the so-called “10 percent condition” 
that the sample size be no more than 10 perecent of the population size. If you have a second 
set of plots and summaries for samples taken without replacement, you can compare the 
standard deviations of the means with those from this activity. Almost no difference will 
be observed for small sample sizes, but when the sample size is 100, the standard deviation 
without replacement will be noticeably smaller than with replacement. 

Body Fat: The Sampling Distribution of the Slope of a Regression Line

The sampling distribution of the slope of a regression line seems more difficult for students 
to visualize than those for sample means and proportions. The following activity allows 
students to see that the slope of a regression line based on a sample is simply another sample 
statistic and, like every sample statistic, it has a sampling distribution.

We shall begin with a context that meets the assumptions of the Simple Linear Regression 
Model:

	 •	 The relation between x and y is captured by the model, y 5 α 1 βx 1 Error.
	 •	 The distribution of errors for each fixed x-value has a mean of 0.
	 •	 For each fixed x-value, the Errors in the population are approximately normally distributed.
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	 •	 For each fixed x-value, the y-values have the same standard deviation.
	 •	 The Errors associated with different observations are independent of one another.

In this activity, we will examine the relationship between the percent of body fat and waist 
size in men between the waist sizes of 30 and 45 inches. Of course, the percent of a person’s 
body that is made up of fat depends on several factors, but there is a linear relationship 
between these two variables for men in this waist size range. We will also change technology 
gears and demonstrate the use of a graphing calculator (in our case a TI2841). 

For purposes of our simulation we will assume that men with a 30-inch waist average 
8.3 percent body fat, and that each additional inch in waist size carries with it, on average, 
1.7 percentage points more body fat. This means the regression line for the population would 
have the equation:

%BodyFat 5 242.7 1 1.7  WaistSize

We will simulate sampling men from this age range, one from each of several waist sizes. 
In our simulation, we will assume a normally distributed body fat percentage at each of 
these waist sizes with a standard deviation of about 4.7 percentage points. We will use 
a TI2841 graphing calculator for this simulation. In List #1, enter the waist sizes 30, 
32, 34, 36, 38, 40, 42, and 44. We will now generate the body fat percentages in List #2. 
The predicted value of the body fat is given by the regression equation, and we want to 
introduce random error into each selection to simulate randomly selecting from all men 
with the given waist size. To do so, move the cursor to the title bar of L2 and enter the 
formula 242.7 1 1.7*L1 1 randNorm(0,4.7,7). This will generate body fat percentages that 
vary from the predicted value by an amount that is normally distributed with standard 
deviation 4.7, and should result in a table that looks something like Figure 15. Of course, 
since we are randomly generating the errors, your values in L2 will probably be different 
than mine.

Next, students should calculate the regression line and create a scatterplot of the values.
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Have students compare their plots and their regression equations. Remind them that they all 
“sampled” from the same population, yet their graphs and regression equations are different. 
There are two parameters of interest in this simulation: the slope of the regression line and 
the y-intercept of the regression line. Here (as in AP Statistics) we will consider only the 
slope. Unfortunately the steps above are a bit cumbersome for selecting many samples, 
which is what we need to do to generate an effective simulated sampling distribution. 
A short calculator program will allow us to repeatedly select at random one person of 
each waist size from this population as well as calculate the slope of the sample regression 
equation. (As a reminder, we note that different calculators will have a slightly different 
syntax in their programming steps.)

Pedagogically, it makes sense to first talk to students about the process we are going to do 
and then convert the verbal explanation into calculator language. We recommend writing 
the basic steps on the blackboard as you talk through the process with students, then writing 
the calculator commands that will execute each step. Our basic process is as follows:

1.	 Select (say) one person of each waist size in the domain.
2.	 Calculate the regression equation.
3.	 Record its slope.
4.	 Repeat many times.
5.	 Plot the slopes.

Steps 1 and 2 are pretty straightforward. Leave some space above the calculator commands 
for step 1 because we’ll need to add some things later.

Step 1: Select one person of each waist size.

:{30,32,34,36,38,40,42}→L1

:242.7 1 1.7* L1 1 randNorm(0,4.7,7)→L2

Step 2: Calculate the regression equation.

:LinReg(a 1 bx)

Steps 3 and 4 require a loop to be set up. A “For” loop would be effective here, and it is worth 
taking a few minutes to explain how this works to students. A “For” loop has a placeholder 
variable, a beginning index, and an ending index. The command for the loop is something like

:For(I,1,50)
:
:
:End
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When the line with the “For” command is reached, the value of the beginning index (1 in 
this case) is stored into the variable I. Then the calculator executes the commands that follow 
until it reaches the “End” command. At this point it jumps back to the “For” line and stores 
the value 2 in the variable I. This continues until the value 50 is used, at which point the 
calculator will continue past the “End” command. The value of I can also be used within the 
loop, a property we will exploit as we tell the calculator where to store the value of the slope 
each time. 

L3(I) refers to the “ith” element in List 3. Therefore, we can use the command 

:b  —>   L3(I)

to store the current slope into the corresponding place in List 3 as we proceed through the 
loop. So far, the program looks like this:

:{30,32,34,36,38,40,42}→L1

:For(I,1,50)
:242.7 1 1.7* L1 1 randNorm(0,4.7,7)→L2

:LinReg(a 1 bx)
:b→L3(I)
:End

Note that we only need to store the x-values into L1 once because they will not change from 
sample to sample. (The store command is therefore not inside the loop.) Now we need to 
plot the distribution of L3. To accomplish this, we need to add two lines to the end of the 
program:

:Plot1(Histogram, L3, 1)
:ZoomStat

To avoid complications from previous use of the calculator, we also must add some 
commands to the beginning to turn off all other plots and equations, and we can add an 
optional command to ask the user to enter the number of samples to take. The completed 
program would look like this:

:PlotsOff
:FnOff
:ClrList L1,L2,L3

:Disp“HOW MANY”
:Disp“SAMPLES?”
:Prompt S
:{30,32,34,36,38,40,42}–>   L1
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:For(I,1,S)
:242.7 1 1.7* L1 1 randNorm(0,4.7,7)→L2

:LinReg(a 1 bx)
:b→L3(I)
:End
:Plot1(Histogram,L3,1)
:ZoomStat

The program may take a few moments to run, but the reward at the end is terrific—a 
simulated sampling distribution of the slopes! Next, you should calculate the mean and 
standard deviation of the slopes. (My calculator shows a mean of 1.77 and standard 
deviation, 0.43.) To reinforce the meaning of this histogram it is probably a good idea to ask 
some questions such as: “What is represented by the bar furthest to the right?” You want 
students to recognize that, again, the sampling distribution of the slope is again a game of 
“What If?” What if this was our sample? Or that? What would be the slope of the regression 
line? Each sample resulted in a different slope. The bar farthest to the right in the histogram 
represents the steepest slopes. You might suggest a possible sample that would give a slope 
that is steeper than normal. Such a sample might have lower than predicted values for 
smaller waists and higher than predicted values for larger waists. Then follow up with a fill-
in-the-blank question like, “Most of the samples resulted in regression line slopes between 
__?__ and __?__.”

The standard deviation calculated above is the estimated standard error of the slopes, which 
is an important component of the inference procedures. You might want to review regression 
output and show where this standard error of the slope appears on the printout.

Applets

No discussion of simulating sampling with technology would be complete without 
mentioning the Internet! Statistics applets are available that offer some nice advantages over 
purchased statistics software. First, applets are free. For districts with tight budgets, this is an 
important consideration. Second, they are accessible to anyone who has Internet access. This 
means many students can access them from home or the library.

There are also a couple disadvantages. Applets sometimes disappear or move unexpectedly 
so becoming too dependent on them can be risky. They are also relatively inflexible. Applets 
are designed to demonstrate one concept and are generally not adaptable to different 
settings. It is often impossible to change settings such as histogram bin widths and sample 
sizes, or you may have only limited options for the settings.

As of this writing, putting “ ‘Applet’ [&] ‘Simulation’ [&] ‘Sampling Distribution’ ” into my 
browser netted over 850 hits, most with .edu extensions. That’s a lot of places to begin 
looking for quality applets to utilize in teaching statistics!

Sampling Distributions: The What-Ifs with Technology
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