
 
 
AP Computer Science 
Curriculum Module: Gradebook Project 
 
Jill Kaminski 
Chaparral High School 
Parker, Colorado 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2008 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the 
acorn logo are registered trademarks of the College Board. connect to college success is a trademark owned by the 
College Board. Visit the College Board on the Web: www.collegeboard.com 
 



Gradebook Project 
 
Project Description 
Electronic gradebooks are used by teachers to store grades on individual assignments and to 
calculate students’ overall grades. Perhaps your teacher uses gradebook software to keep track of 
your grades.  
 
Some teachers like to calculate grades based on what is sometimes called a “total points” system. 
This is the simplest way to calculate grades. A student’s grade is the sum of the points earned on 
all assignments divided by the sum of the points available on all assignments. For example, 
suppose that a computer science class has a set of programming projects, quizzes, and tests, and 
that the sum of the points of all of these assignments is 485 for a semester. A student earns 412 
of those points. His grade is 412/485, or about 84.95 percent.  
 
In a total points system, teachers have to carefully figure out how many points each assignment 
should be worth, in order to make sure that certain assignments don’t dominate the students’ 
grades. Some teachers don’t like to worry about the point value of each assignment, and they 
prefer what is sometimes called a “weighted category” system.  
 
In a weighted category system, the teacher defines two or more categories and assigns a 
percentage weight value to each category. The sum of the weights adds up to 100. Grades are 
calculated by taking the average score of assignments in each category, multiplying each of those 
numbers by the weight for its category, and adding those values together.  
 
For example, the computer science class described above could grade with a weighted category 
system by defining three categories: programming projects, quizzes, and tests. The teacher 
decides that programming projects should be worth 45 percent, quizzes 10 percent, and tests 45 
percent. A student’s average on programming projects is .95, on quizzes is .92, and on tests is 
.85. The student’s grade is:  

 
PROJECTS   QUIZZES    TESTS    GRADE 
(.95 × 45) + (.92 × 10) + (.85 × 45) = 90.2 

 
Each value in parentheses is the portion of the total grade for one category.  
 
In this project, you will complete several classes to create an electronic gradebook that can 
calculate grades using either the total points system or the weighted category system. You will 
also write a client class to test your other classes. Your client class can even be written to store 
your own grades in one or more of your classes at school!  
 
Topics addressed in this project include: 

• Interfaces 
• Inheritance  
• Polymorphism 
• Arrays 
• ArrayLists 



Design Description  
Now that you understand the basics of gradebook software, let’s take a look at the basic classes 
that will be used in this project. They have been designed for you, but it’s important that you 
understand the design before you attempt to write the code.  
 
Here are the classes used in this project, and the methods defined in each class: 
 

• Since we’re going to make more than one kind of gradebook, we will use an interface 
named Gradebook. The interface contains two methods: calculateGrade, which 
calculates a student’s grade according to the rules for the implementation of the 
Gradebook, and add, which adds a new assignment to the Gradebook.  

• We have a TotalPointsGradebook class, which implements Gradebook and uses the 
total points system of calculating grades. This is the simpler implementation.  

• We also have a CategoryGradebook class, which implements Gradebook and uses 
the weighted category system of calculating grades. This is the more difficult 
implementation.  

• We have an Assignment class. An Assignment has a name, a number of points 
possible for the assignment, and a number of points earned for an assignment. The 
TotalPointsGradebook class has an ArrayList containing Assignment objects. 

• We have a CategoryAssignment class. The CategoryAssignment class extends the 
Assignment class. It has everything that the Assignment class has. In addition, it has 
the name of the category to which this Assignment belongs. The 
CategoryGradebook class has an ArrayList containing CategoryAssignment 
objects.  

 
Here is a diagram of the design of this project: 
 
 

Assignment Gradebook 
(interface) 

 
 
 
 
 
 
 

 CategoryAssignmentCategoryGradebookTotalPointsGradebook  
 

 
 
 
 
 



Teacher Materials 
Design Quiz or Discussion Questions  
 

1. Why is an ArrayList used to store assignments in the TotalPointsGradebook and 
CategoryGradebook classes rather than an array? 

 
An ArrayList is used because we do not know in advance exactly how many 
Assignment objects will be added to the Gradebook. An ArrayList allows us to add 
objects as we need them.  
 
Actually, an array could be used, since all objects in the list are of the same type. But if 
we used an array, we would have to declare the length of the array to be larger than we 
ever anticipate needing, and we would have to keep an additional instance variable to 
represent the actual number of assignments that are currently in the Gradebook.  
 
If the number of assignments ever exceeded our estimate, we would have to declare a 
bigger array and copy all of the existing Assignments into the new array, or our 
program would crash. These restrictions make an ArrayList a better choice.  

 
2. What are the benefits of using a subclass for CategoryAssignments? Why not just 

have Assignment and CategoryAssignment be similar but unrelated classes? 
 
The CategoryAssignment class needs to have all of the attributes and behaviors of the 
Assignment class, and in addition, will need one additional attribute (the name of the 
category to which the Assignment belongs) and one additional behavior (the ability to 
return the Assignment category). It’s much better to use the Assignment class as a 
parent class than to reinvent the wheel and copy all of its attributes and behaviors to a 
separate class.  
 
If we make a separate and unrelated CategoryAssignment class, and later find we 
have a bug in the Assignment class, we have to remember to fix that bug in two 
different classes. If we discover later on that we have need of new kinds of 
Assignments, then we have to repeat the process, and still remember to put our bug 
fixes into each and every new class.  
 

3. What are the benefits of using the Gradebook interface? Why not just have the 
TotalPointsGradebook and CategoryGradebook be similar but unrelated classes? 
 
The benefits of this design decision may not be obvious in the class design, or even in the 
code itself. The benefits are best seen in client code.  
 
For example, our client class can have an array or an ArrayList of Gradebook objects 
to represent a student’s schedule of classes. If some classes use a total points system and 
others use a weighted category system, our array or ArrayList will still work.  
 



Another example of the benefits of using interfaces (and also of using abstract classes or 
parent classes) can be seen when passing a parameter to a method. The formal parameter 
can be the interface (or abstract class, or parent class), but the actual parameter can be 
anything that implements or extends the formal parameter. This makes our code very 
flexible, and also allows for other classes that we may not have even thought of yet!  

 
4. Which classes would you write first, and why?  

 
I’d suggest writing the Assignment class first, and then client code to test it. Then, write 
the TotalPointsGradebook and client code to test it.  
 
Then, write the CategoryAssignment class, as it extends Assignment. This is 
relatively simple, and Assignment has already been tested. Write client code to test 
CategoryAssignment. Finally, write CategoryGradebook and its client code.  

 
 
Part 1: TotalPointsGradebook 
 
Q: How do you eat an elephant? 
A: One bite at a time.  
 
Q: How do you eat a computer? 
A: One byte at a time. ☺ 
 
Q: How should you write a long program? 
A: A little at a time.  
 
Emphasize to your students that it’s much, much easier in the long run to break a long program 
into parts, and to code and test each part before moving on, than to try to write the whole 
program at once. For the first part of this program, students will write the Assignment class and 
client code to test it, and then write the TotalPointsGradebook class and client code to test 
it.  
 
See the Part 1 folder for the necessary files. To help you differentiate instruction among your 
students of varying levels of ability, there are two versions of this part of the assignment: Level 
A and Level B. Level A is the more difficult version. The Part 1 folder contains two folders 
named Level A and Level B, and each of these folders contains all of the files that students need.  
 
In Level A, students are given instance variables and method headings, but they otherwise write 
the Assignment class, the TotalPointsGradebook class, and the client code.  
 
In Level B, students get some extra help. Since the Assignment class contains only a 
constructor and accessor methods and is not very difficult, students will complete that class just 
as the Level A students do. A client class that invokes the Assignment methods and tells 
students what results are expected has been provided for Level B. After the Assignment class 
has been tested, Level B students write most of the TotalPointsGradebook class, but are 



given some extra hints in the comments. The provided client class also tests the 
TotalPointsGradebook class; this code just needs to be uncommented.  
 
At all levels, instructions in the form of postconditions are provided as comments in the various 
files. Students can, of course, reference the first two pages of this document, as well as the AP 
Computer Science Quick Reference (appended to the AP Exam and available at the AP 
Computer Science Course Home Pages (at 
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/8153.html and 
http://apcentral.collegeboard.com/apc/public/courses/teachers_corner/4483.html) 
as needed, but they should not need additional resources in order to complete this project.  
 
The instructions include vocabulary that is tested on the AP Computer Science Exams, such as 
accessor method, mutator method, precondition, postcondition, and instantiation. If your 
students are not familiar with this terminology, then this project provides a good opportunity for 
them to learn it.  
 
Emphasize to your students that when code has been provided for them, they should not change 
it! The Gradebook interface given to students is complete and correct. I find that when I give 
my students code, they are very tempted to change that code when they find problems with the 
project. You can mitigate the effects of this by having a spare copy of the original files handy, 
and having students replace their “improvements” with the original when necessary. Explain to 
them that in the “real world,” software engineers get fired for changing code that works!  
 
The classes will not compile until all non-void methods are written. If you want students to 
compile after writing each method, then have them write dummy return statements inside these 
methods, so that the class will compile before being entirely implemented.  
 
Part 2: CategoryGradebook 
 
On to Part 2! Students should have built confidence by successfully implementing and testing the 
TotalPointsGradebook at their appropriate level. Now it’s time to move on to the more 
challenging CategoryGradebook. There are three levels of differentiation available in Part 2.  
 
At all levels, students should write and test the CategoryAssignment class before writing the 
CategoryGradebook class. I recommend that students use a new folder for this part, so that 
you can evaluate Part 1 separately from Part 2. They’ll need to put a copy of their Assignment 
class from Part 1 into the new folder.  
 
In Level A, students will implement all methods. As before, they are given method descriptions 
in comments. Level A students will write the client class to test the CategoryAssignment 
class, and are given hints in comments to help them do this. In the CategoryGradebook class, 
Level A students are given neither the instance variables nor the parameter list for the class 
constructor. Additionally, they are not given the private helper method shown in the solution, 
which returns the index number of a given category. They are given a hint that if the 
calculateGrade method would benefit from a private helper method, then that method should 
be thoroughly documented.  



 
The CategoryAssignment class given to Level B students is the same as for Level A, except 
that students are given the parameter list for the constructor. Students will implement all methods 
in this class. Level B students will also write the client class to test CategoryAssignment, but 
are given additional help in comments. These comments direct students to the client class for 
Part 1, and tell them to use this code as an example to write their test code for 
CategoryAssignment. Basically, they can use all of the Assignment client code, unchanged 
except that the object is a CategoryAssignment rather than an Assignment, and they’ll add 
one extra method call to test the getCategoryName method.  
 
Level B students get some extra help in the CategoryGradebook class. Specifically, they are 
given the instance variables and the private helper method findCategory. The constructor and 
the add method are the easiest places to start. Tell them that findCategory can be used to help 
calculateGrade do its job, and remind them that findCategory works, so they should not 
change it. Some Level B students might need help with calculateGrade. You can conduct a 
mini-class with these students and help them brainstorm a pseudocode solution. Help them along 
the way. I’d rather challenge students at this level a bit than put them in Level C, but I wouldn’t 
want to frustrate them.  
 
Level B students will also write the client code to test CategoryGradebook, again using the 
client code from Part 1 as an example. If you like, you could give them the client code, but I 
think that it’s important that students get practice in both implementing classes and in writing 
client code for those classes.  
 
Level C students are given the same CategoryAssignment class and client code instructions 
as Level B students, except that the instance variable is declared for them. At this point, even 
Level C students who are struggling should be able to complete a simple constructor and 
accessor method, and they should be able to refer to client code from Part 1 and test their class. 
They may just need a bit more help than their Level B counterparts.  
 
Level C students are given quite a bit more scaffolding in the CategoryGradebook class. They 
will write the part of the constructor that initialized the instance variables, a line or two of code 
in the calculateGrade method (according to instructions in comments), and the add method. 
They are also given part of the client code to test the classes, but will complete it based on the 
example provided.  
 
More Ideas 
 
After both parts of this assignment are completed, additional client code can be written to create 
arrays or ArrayLists containing Gradebooks. These could be used to simulate either of the 
below: 
 

• A teacher’s gradebook for a single class of 30 students 
• A student’s set of grades for all of his current classes 

 



This additional assignment is used to illustrate the benefits of using a Gradebook interface. We 
don’t have to know in advance what kind of Gradebook objects are in our collection, and no 
casting is necessary to find out the grade calculated by each of them. See Design Quiz question 3 
for more information.  
 
The CategoryGradebook in the solution does not calculate grades properly unless at least one 
Assignment in each category has been added. If your students’ code behaves similarly, then 
they could improve the gradebook so that if no points are available in a category, then the weight 
for that category does not count when calculating grades.  
 
 
 


