

AP® Chemistry 2005 Sample Student Responses Form B

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2005 by College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. Admitted Class Evaluation Service, CollegeEd, Connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the Cornerstones are trademarks owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship Corporation. Other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: http://www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.

AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.

CHEMISTRY

Section II

(Total time—90 minutes)

Part A

Time-40 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{OCl}^-]}{[\text{HOCl}]} = 3.2 \times 10^{-8}$$

- 1. Hypochlorous acid, HOCl, is a weak acid in water. The K_a expression for HOCl is shown above.
 - (a) Write a chemical equation showing how HOCl behaves as an acid in water.
 - (b) Calculate the pH of a 0.175 M solution of HOCl.
 - (c) Write the net ionic equation for the reaction between the weak acid HOCl(aq) and the strong base NaOH(aq).
 - (d) In an experiment, 20.00 mL of 0.175 M HOCl(aq) is placed in a flask and titrated with 6.55 mL of 0.435 M NaOH(aq).
 - (i) Calculate the number of moles of NaOH(aq) added.
 - (ii) Calculate [H₃O⁺] in the flask after the NaOH(aq) has been added.
 - (iii) Calculate [OH-] in the flask after the NaOH(aq) has been added.

(c) HOC + H2O() + H2O+ (cg) + OC rog)	
(b) Hac1 → H++ ∞1-	
introl al 1954 o	
4 / -x +x	
final outer x x x	
$\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}$	
$X = \sqrt{2} \times 10^{-2} = [H_4]$	
PHbg[H+]= 4,12	•

ADDITIONAL PAGE FOR ANSWERING QUESTION 1.

(c) HOCI + Na" + OH" -> HO + Na" + OCI
Net Ionic equation > HOCI + OH -> H20 + OCI
(1) (1) 0.435 Mx 6.55 mL
= 0435 mol = 0.00 b55 V = 0.00 285 mol
(ii) HOC1 + OH> HD + OC1-
35 mmo 2.85 mm.
-2,85 -2,85 +2,85
[Hoc] = 0 bt nmol = 0.54 mm.1] W 34600 = 10000 = 100000
[x1-] = 20 mm ol = 0.107 M
$H_0Cl \longrightarrow H^+ + OCl^-$
20245 0/107
·
0.024C-X X 0.107+X
$K_{a} = 3.2 \times 10^{-3} = \frac{0.0245 - 1}{\times (0.104 + 1)}$
X= 1/33x/0-d.
[H304] = X = 7133x6-9 H
(111) [OH][HO+] = [x/o-1/4]
[OH-]= 1.36 × 6-6. M

CHEMISTRY

Section II

(Total time—90 minutes)

Part A Time—40 minutes YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{OCl}^-]}{[\text{HOCl}]} = 3.2 \times 10^{-8}$$

- 1. Hypochlorous acid, HOCl, is a weak acid in water. The K_a expression for HOCl is shown above.
 - (a) Write a chemical equation showing how HOCl behaves as an acid in water.

HOU+ OH- > H20+OU

- (b) Calculate the pH of a 0.175 M solution of HOCl.
- (c) Write the net ionic equation for the reaction between the weak acid HOCl(aq) and the strong base NaOH(aq).
- (d) In an experiment, 20.00 mL of 0.175 M HOCl(aq) is placed in a flask and titrated with 6.55 mL of 0.435 M NaOH(aq).
 - (i) Calculate the number of moles of NaOH(aq) added.
 - (ii) Calculate $[H_3O^+]$ in the flask after the NaOH(aq) has been added.
 - (iii) Calculate [OH-] in the flask after the NaOH(aq) has been added.

(a) HOCL+ H2O > H3O++OCI-
As the reaction produce HOT, HOCL arts as an acid in water.
(b) [H30+][00] [H30+][00] = 3.2×10-8
[HOCC] 0.175 3.2410
As we can see from (a), Hot and Oct has some mumber of mole;
thus having some molarity.
Let the mobarity be Z.
$\frac{x \times 7}{x} = \frac{x^2}{x^2} = 3.2 \times 10^{-8}$
סטייט פוייגט

1. Z2 = 0.175 × 3.2 × 10-8
= 5.6 × 10 ⁻⁹
~X= 7.5×10 ⁻⁵
: pH = p(H=0+) = -log (7.5x10-5)
= 4.1
(c) HOOL+NaOH > H2O+NaOCL
Net ionic equation: HOCL+ OH- → H=0+OCC-
(d) =) moles of NaOH = 0.435 x 0.00655
= 0.00285 mole
11) moles of HOCL = 0.0035 mole.
When NaoH is titrated with HOCK, 0.0035-0.00285 (mole) of Hoot
will remotin.
> 0.00065 male remains
$[H_30^{\dagger}] = \frac{0.00065}{0.02655} = 2.45 \times 10^{-2}$
177) Because [H30+][OH-] = 1×10-14,
$C0H^{-1} = \frac{10^{-14}}{2.45 \times 10^{-1}} = 4.08 \times 10^{-13}$
X-43~10
<u>-</u>

CHEMISTRY

Section II

(Total time—90 minutes)

Part A

Time—40 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Question 1 below. The Section II score weighting for this question is 20 percent.

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{OCl}^-]}{[\text{HOCl}]} = 3.2 \times 10^{-8}$$

- 1. Hypochlorous acid, HOCl, is a weak acid in water. The K_a expression for HOCl is shown above.
 - (a) Write a chemical equation showing how HOCl behaves as an acid in water.
 - (b) Calculate the pH of a 0.175 M solution of HOCl.
 - (c) Write the net ionic equation for the reaction between the weak acid HOCl(aq) and the strong base NaOH(aq).
 - (d) In an experiment, 20.00 mL of 0.175 M HOCl(aq) is placed in a flask and titrated with 6.55 mL of 0.435 M NaOH(aq).
 - (i) Calculate the number of moles of NaOH(aa) added.
 - (ii) Calculate [H₃O⁺] in the flask after the NaOH(aq) has been added.
 - (iii) Calculate [OH-] in the flask after the NaOH(aq) has been added.

(a)
$$HOCl_{Cag} + H_2O_{(0)} \rightarrow H_3O_{Cag}^+ + OCl_{(aag)}^-$$

(b) $K_a = \frac{[H_3O^+][OCl^-]}{[HOCl]}$
 $3.2 \times 10^{-3} = \frac{x^2}{0.195}$
 $x \approx 7.5 \times 10^{-5}$
 $H_3O^+] = \frac{1}{100} = \frac{1}{1$

= +1 - log (7.5×10-5)

(c) HOCI (ag) + NaOH (ag) -> NaCl (ag) +20H (ag)
(d) () n (NaOH) = CV
= 0.435 × 0.00655
≈ 0.00285 mol
(it) n(NaOH) 1
(ii) n(NaOH) 1 n(Hocl) 1 is needed.
:- n(Hocl) = n(NaOH) = 0.00285 mol during the reaction
A STATE OF THE PARTY OF THE PAR
n (Hoci) before reaction = CV
= 0.175× 0.02000
n (Hocl) 1 n (H30°) 1
$= n(H_30^4) = n(H_0cl) = 0.00065 mol$
∴ [H30+] = "
0.00065
≈ 0.014 M.
(iii) n (NaOH) = 0.00285 m.1
n (NaOH)
n (on-) = =
$:= n(OH^-) = 2n(NaOH)$
= 2 × 0.0028\$
2 0.00570 mol
[OH] = 17
_ 0.00570
0.020m + 0.0065
≈ 0 215 M
√ 17 -61.3 /VI

ADDITIONAL PAGE FOR ANSWERING QUESTION 2.

2A

a) $2H_2O(1) \rightarrow 0_2 + 4H^+ + 4e^-$
b) 5.61 min $(60s)(0.513c) = 173 c$
min // s /
$e)2H_2O \rightarrow 2H_2(q) + O_2(q)$
There are twice as many moles of H. produced for each mole of O. produced.
, · · · · · · · · · · · · · · · · · · ·
d) 173 C $\left(\frac{\text{mol e}}{96500c}\right) \left(\frac{\text{mol O}_2}{4\text{mol e}}\right) \left(\frac{2\text{mol H}_2}{\text{mol O}_2}\right) = 8.95 \times 10^{-4} \text{mol H}_2$
e) Py=nRT
V=(8.95x10-4 mol H2) R (298K)
1.00 atm
= 0.0219 L H2(q)
f) The total pressure inside the test tube is not compose of H2 only.
There is also the pressure of water vapor.
· · · · · · · · · · · · · · · · · · ·
Ptot = PHO + PH2 though the total walking Avonda Hoot of coloulating which is all I again
thus, the total volume exceeds that of calculations, which is of H. only-
·
<u> </u>

(2)
a) $20^{-2} \rightarrow 0_2^{\circ} + 4e^{-}$
b) Q = I · t
I = 0.513 ampere
Q= 0.513 ampere. 336 seconds = 172 coulombs
c) $H_2O(e) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$
He number of moles in the equation above.
THE HOMES OF MORES IN THE EQUATION GOOVE.
d) mol e = 172 C = 1,78 × 10-3 moles
96500 C
2H ⁺ + 2e ⁻ → H ₂
2 moles of e forms one make of Hz.
1.78×10^{-3} - 8.9×10^{-4} mol H_2
e) PV = nRT
1.00 atm · V = 8.9 × 10-4 mol · 0.0821 · l· atm 298·K
mol· K
$V = 2.2 \times 10^{-2}$ L H ₂ formed
f) By doing the adjustment, the pressure in the tube is decreased.
Pressure is inversely prapartianal to volume, as we can see from the equation
below:
$P_1 V_1 = P_2 V_2,$
therefore the volume is greater.
•

ADDITIONAL PAGE FOR ANSWERING QUESTION 2.

2a) 2H2O(0+0,(q)
26) C = amps xsec
= .513 × 336.6
C = 173 Coulomios
7. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
are 2 moles of the for every I mole of Oz, so more the is collected
2d) 173C mol = HO 2moles Hz = 1.79 × 10-3 moles Hz 96500 C 2moles Hz D
2e) 1.79×10-3 moles H2 Z2.4L = 4.02×10-2 L H2
Imole
2f) PV=nRT; n, R, and T remain constant so therefore the pressure has decreased, giving it a greater volume.

ADDITIONAL PAGE FOR ANSWERING QUESTION 3.

a. $.00633 \text{ mol/L} = \frac{0}{5,00L} \text{ M} = \frac{0}{2}$
(, 0317 mcls of X)
b 60633 06427 = . 60206 M
. 00206M = 5.00L . 0103 mol X after 20 min 0206 mol Y
X -> 2 Y + Z ,0103 molx 2 mol Y 6.022 x 102 molecul
= 1,24 × 10 ²² molecules Y
c. In respect to X this is a first order reaction because In [x] is a straight (linear) line.
d. Rate = K [X]'
e. In [A]+ - In [A]0 =- kt In [, U0349mor]- In [, U0633mor]+ - k 30 min
$-,0198 = -k$ $(,0198 min^{-1} = k)$
$f. \ln [A]_{t} - \ln [.08633^{mal/L}] = -(.0198 min^{-1})(150 min)$ $\ln [A]_{t} = -2.97 + \ln [.00633^{mal/L}]$ $\ln [A]_{t} = -8.03$ $[A]_{t} = 3.25 \times 10^{-4}$

ADDITIONAL PAGE FOR ANSWERING QUESTION 3.

a) 1 x = 0.00677 mol x 5.001 = 0.03 (65 mol
b) & molecule, y= 0.00477 and x x 5.00ex 2nd y x 6.022x 10 molecule y
- I mot x I mot y
= 2.57 X10 ²² molecule Y
of In [X] versuse time is a straight line.
of In [X] versuse time is a straight line.
d) R-K[X] IN[X]=-K++IN[X]o
e) $k = \ln \left(\frac{x}{x_0} \right) = \pm \left(\frac{-5.062}{-6.253} \right) = 9.63 \times 10^{-2} \text{ min}^{-1}$
(0, mm
c) ln [x] = -9.63x(02 min x 150 min x (-5.062)
•
[X]=3.37.X(5°M
•

3, a, 0,00633 mol x , 5 L - 0,0317 mol x initially
b. Initial = 0.0317 mol X
20 minutes = 0.00427 molx , 5x = 0.0214 mol X
1/2 after 20 mins
0.0317 mol X - 0.0214 mol X = 0.0103 mol X disappeared
-For every 1 mol of X that disappears, 2 mols of Y produced
0.0103 mol x 2 = 0.0206 mol x produced
· ·
C. The rate law with respect to X is 1, when x is graphed
with time, and the x values are converted to the natural
log of X, and the line is straight (slope is constant) than the
order with respect to x is 1. when x is plotted normally and it is a
straight, the order is 0. when x is plotted as the inverse and is a
d. Rate Law= K[x] straight line, the order is 2.
e. Rate Law = moi _ 0.00520 moi _ 5.2×10-4moi
Lmin L (10 min) L min
5.2×10-4 mol = K (0.00520 mol)
L min
K= 5.2×10-4 mol. K _ 0.1 min-1 = K
Kmin 0.00520 mol
•
f. Rate Law = K[x]
mol 0.1 min-1 [x]
L (150 min)
[x] = mol . mih _ mol _ 0.0667 mol
L(150min) 0.1 L(150)(0.1) L
[X]= 0.0667 M

USE THIS PAGE FOR ANSWERING QUESTION 4.
PLEASE WRITE THE LETTER FOR THE REACTION IN THE SQUARE AT THE
LEFT END OF EACH BOX. ONLY THE ANSWERS IN THE BOXES WILL BE SCORED.

$$h \mapsto Pb + Aa^+ \longrightarrow Pb^+ + Aa$$

$$C \qquad Z_n^{2+} + NH_3 \rightarrow Z_n (NH_3)_4^{2+}$$

$$e \qquad k + H_2O \rightarrow k^+ + OH^- + H_2$$

$$f + H^{\dagger} \rightarrow HF$$

USE THIS PAGE FOR ANSWERING QUESTION 4.
PLEASE WRITE THE LETTER FOR THE REACTION IN THE SQUARE AT THE
LEFT END OF EACH BOX. ONLY THE ANSWERS IN THE BOXES WILL BE SCORED.

USE THIS PAGE FOR ANSWERING QUESTION 4.
PLEASE WRITE THE LETTER FOR THE REACTION IN THE SQUARE AT THE
LEFT END OF EACH BOX. ONLY THE ANSWERS IN THE BOXES WILL BE SCORED.

$$h \qquad Pb + Ag^{+} \rightarrow Pb^{2+} + Ag$$

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 24. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

$$2 \text{ Al}(s) + 2 \text{ KOH}(aq) + 4 \text{ H}_2 \text{SO}_4(aq) + 22 \text{ H}_2 \text{O}(l) \rightarrow 2 \text{ KAl}(\text{SO}_4)_2 \cdot 12 \text{H}_2 \text{O}(s) + 3 \text{ H}_2(g)$$

- 5. In an experiment, a student synthesizes alum, $KAl(SO_4)_2 \cdot 12H_2O(s)$, by reacting aluminum metal with potassium hydroxide and sulfuric acid, as represented in the balanced equation above.
 - (a) In order to synthesize alum, the student must prepare a 5.0 M solution of sulfuric acid. Describe the procedure for preparing 50.0 mL of 5.0 M H₂SO₄ using any of the chemicals and equipment listed below. Indicate specific amounts and equipment where appropriate.

10.0 M H₂SO₄

50.0 mL volumetric flask

Distilled water

50.0 mL buret

100 mL graduated cylinder

25.0 mL pipet

100 mL beaker

50 mL beaker

- (b) Calculate the minimum volume of $5.0 M H_2SO_4$ that the student must use to react completely with 2.7 g of aluminum metal.
- (c) As the reaction solution cools, alum crystals precipitate. The student filters the mixture and dries the crystals, then measures their mass.
 - (i) If the student weighs the crystals before they are completely dry, would the calculated percent yield be greater than, less than, or equal to the actual percent yield? Explain.
 - (ii) Cooling the reaction solution in an ice bath improves the percent yield obtained. Explain.
- (d) The student heats crystals of pure alum, $KAl(SO_4)_2 \cdot 12H_2O(s)$, in an open crucible to a constant mass. The mass of the sample after heating is less than the mass before heating. Explain.

0	In order to prepare a 50 ml 5 M H2 302 solution the student
	should take a 50 ml volumetric flask and lottelly fill it with
	25 ml of 10 M H-504 that has been measured using the loom 1 graduated
•	cylinder. The student should then use distilled mater and fill the
	volumetric flask until the 50ml mark has been reached.

ADDITIONALITY TOLE TOLE AND WELKING QUESTION 5.
ADDITIONAL PAGE FOR ANSWERING QUESTION 5. b) $\frac{1}{2.79}$ Al \times $\frac{1}{2.99}$ Al \times
5 mel H250;
40 ml of H504.
and many the l
c) (i) % yield = experimental x 100 /
The percent yield would be greater since the experimental mass of the cryotals would be greater.
The parcent yield would be greater since the experimental mass of he
cryotals upilled be greater.
ii) By cooling the reaction solution more of the crystals form thus there is a higher mass of crystals (experimental) and a higher 1/2 yield,
is a higher mass of custols (excerimental) and a higher 1/2 yield.
10 (11)
d) The mass of the sample after heating is less than the mass before heating as dehyel notion occurs, where the water molecule bound to the crystal tends to evaporate. This process is given by
olehyel ration occurs, where The water molecule bound to the crystal
tends to evaporate. This process is given by versains behind evaporates
evaporates, evaporates
· · · · · · · · · · · · · · · · · · ·
KA1(504)2-12130 -> KA1(504)2 + H2O6) evaporates
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

5B,

B B B B B B B B B B B B

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 24. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

$$2 \text{ Al}(s) + 2 \text{ KOH}(aq) + 4 \text{ H}_2\text{SO}_4(aq) + 22 \text{ H}_2\text{O}(l) \rightarrow 2 \text{ KAl}(\text{SO}_4)_2 \cdot 12 \text{H}_2\text{O}(s) + 3 \text{ H}_2(g)$$

- 5. In an experiment, a student synthesizes alum, $KAl(SO_4)_2 \cdot 12H_2O(s)$, by reacting aluminum metal with potassium hydroxide and sulfuric acid, as represented in the balanced equation above.
 - (a) In order to synthesize alum, the student must prepare a 5.0 M solution of sulfuric acid. Describe the procedure for preparing 50.0 mL of 5.0 M H₂SO₄ using any of the chemicals and equipment listed below. Indicate specific amounts and equipment where appropriate.

Distilled water

100 mL graduated cylinder

100 mL beaker

50.0 mL volumetric flask

50.0 mL buret

25.0 mL pipet

50 mL beaker

- (b) Calculate the minimum volume of $5.0 M H_2SO_4$ that the student must use to react completely with 2.7 g of aluminum metal.
- (c) As the reaction solution cools, alum crystals precipitate. The student filters the mixture and dries the crystals, then measures their mass.
 - (i) If the student weighs the crystals before they are completely dry, would the calculated percent yield be greater than, less than, or equal to the actual percent yield? Explain.
 - (ii) Cooling the reaction solution in an ice bath improves the percent yield obtained. Explain.
- (d) The student heats crystals of pure alum, $KAl(SO_4)_2 \cdot 12H_2O(s)$, in an open crucible to a constant mass. The mass of the sample after heating is less than the mass before heating. Explain.

a) now of moles before dilution = nix of moles after dilution.
$C_1 = 10.0 \text{ M}$ $C_2 = 5.0 \text{ M}$ $C_1 V_1 = C_2 V_2 \Rightarrow$
$V_1 = ?$ $V_2 = 50.0 \text{ml}$ $V_1 = C_2 V_2 - (5.0)(50.0) - 25.0 \text{ml}$
C, 10.0
Using a 25.0 ml piper, transfer 25.0 ml of 10.0 M H2504 into a
50.0 ml volumetric flask. Add distilled water to the flask until
ralibration mark. Stopper and mix the flask, the resulting solution is
50.0 ml, 5.0 M 42 SO4

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.
b) $n = \frac{m}{M} = \frac{2.7}{26.98} = \frac{2.7}{27} = 0.10 \text{ moles Al}$
2 moles of Al -> 4 moles H2SDy x= 0.2 moles H2SDy
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
n = 0.20
c)(i) percent yield = original mass, 100.
calculated mass
since the cystals are not completely dry, their mass increases. =>
denominator increases and percent yield decreases, therefore the
calculated percent yield will be less than the actual percent yield.
ii) because calculated mass will cool down and increase its weight
which will be closer to the original mass thus improving percent
yield
d) after healing, the mass becomes less because all water molecules
evaporate from the crystals while before it is heated water molecules
are present which in crease mass of crystals.

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 24. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

$$2 \; \mathrm{Al}(s) \; + \; 2 \; \mathrm{KOH}(aq) \; + \; 4 \; \mathrm{H_2SO_4}(aq) \; + \; 22 \; \mathrm{H_2O}(l) \; \; \rightarrow \; \; 2 \; \mathrm{KAl}(\mathrm{SO_4})_2 \cdot 12 \mathrm{H_2O}(s) \; + \; 3 \; \mathrm{H_2}(g)$$

- 5. In an experiment, a student synthesizes alum, $KAl(SO_4)_2 \cdot 12H_2O(s)$, by reacting aluminum metal with potassium hydroxide and sulfuric acid, as represented in the balanced equation above.
 - (a) In order to synthesize alum, the student must prepare a 5.0 M solution of sulfuric acid. Describe the procedure for preparing 50.0 mL of 5.0 M H₂SO₄ using any of the chemicals and equipment listed below. Indicate specific amounts and equipment where appropriate.

10.0 M H₂SO₄

50.0 mL volumetric flask

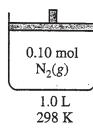
Distilled water

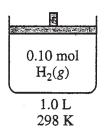
50.0 mL buret

100 mL graduated cylinder

25.0 mL pipet

100 mL beaker

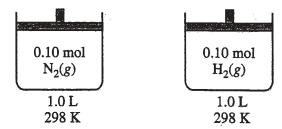

50 mL beaker


- (b) Calculate the minimum volume of $5.0 M H_2SO_4$ that the student must use to react completely with 2.7 g of aluminum metal.
- (c) As the reaction solution cools, alum crystals precipitate. The student filters the mixture and dries the crystals, then measures their mass.
 - (i) If the student weighs the crystals before they are completely dry, would the calculated percent yield be greater than, less than, or equal to the actual percent yield? Explain.
 - (ii) Cooling the reaction solution in an ice bath improves the percent yield obtained. Explain.
- (d) The student heats crystals of pure alum, $KAl(SO_4)_2 \cdot 12H_2O(s)$, in an open crucible to a constant mass. The mass of the sample after heating is less than the mass before heating. Explain.

	25ml of	10.0 M	H,504	in 100 m	1 beaker	then pour
125	iml disti	Hed Ho	inta	a graduati	ed cylinder	then pour r and add
+	o the 10	oml bec	nker of	H5504		
			,			
(b)	2.79	Imole	1 mule	402	<u> </u>	
		279	1 mole	5 mile	15	
		1 72	_ 2			
		10 5	50			
		1				

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.

(b) greater than because the water would make the
(Di) greater than because the water would make the precipitate more massive so your calculations would show you yielded more precipitate.
would show you yielded more precipitate.
This allows thery stals to form and harden
a Ti ua i i i i i i i i i i i i i i i i i i
1) The H2O molecules have evaporated therefore the mass is
VESS.
•


- 6. Consider two containers of volume 1.0 L at 298 K, as shown above. One container holds 0.10 mol $N_2(g)$ and the other holds 0.10 mol $H_2(g)$. The average kinetic energy of the $N_2(g)$ molecules is 6.2×10^{-21} J. Assume that the $N_2(g)$ and the $H_2(g)$ exhibit ideal behavior.
 - (a) Is the pressure in the container holding the $H_2(g)$ less than, greater than, or equal to the pressure in the container holding the $N_2(g)$? Justify your answer.
 - (b) What is the average kinetic energy of the $H_2(g)$ molecules?
 - (c) The molecules of which gas, $\,N_2\,$ or $\,H_2\,$, have the greater average speed? Justify your answer.
 - (d) What change could be made that would decrease the average kinetic energy of the $N_2(g)$ molecules in the container?
 - (e) If the volume of the container holding the $H_2(g)$ was decreased to 0.50 L at 298 K, what would be the change in each of the following variables? In each case, justify your answer.
 - (i) The pressure within the container
 - (ii) The average speed of the $H_2(g)$ molecules

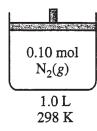
(a) $PV = NRT$				
P = ART Since the number of modes, temperature and volume are equal				
in both containers.				
and because Ris a constant,				
the pressure in the container holding the H2 is equal to the				
protein the container holding the N2.				
}				
(b) since overage kinetic energy is directly proportional to temperature,				
and the temperatures in both contained one same,				
the average kinetic energy of the Ho molecules would egand				
6.2×10-21 J.				

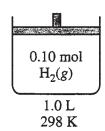
$\mathbf{B} \ \mathbf{B} \ \mathbf{B}$

ADDITIONAL PAGE FOR ANSWERING QUESTION 6.

(9	speed of a molecule is inversely proportional to its square root of mass,	_
	since No has a larger mass than Ho, the molecules of Ho have a	
	greater average coeed.	
(d)) as stated in (b), our roag kinetic energy is directly proportional to)
	temperature, so in order to decrease average kinetic energy of N2	
	molecules, temperature should be decreased	_
		_
(e)	(i) initial pressure : $P_i = \frac{0.10 \times 0.082 \times 298}{V}$	_
		_
	changed pressure: $P_{\epsilon} = \frac{0.10 \times 0.072 \times 290}{0.5} = \frac{0.10 \times 0.072 \times 290}{1} = 2 \times P_{\epsilon}$	
	the pressure would doublein its value	
	The press to word a notable in the value	- .
	(ii) the speed would not change since the temperature is kept	_
	constant and the mass of the individual molecules doesnot chan	4
		_
		_

- 6. Consider two containers of volume 1.0 L at 298 K, as shown above. One container holds 0.10 mol $N_2(g)$ and the other holds 0.10 mol $H_2(g)$. The average kinetic energy of the $N_2(g)$ molecules is 6.2×10^{-21} J. Assume that the $N_2(g)$ and the $H_2(g)$ exhibit ideal behavior.
 - (a) Is the pressure in the container holding the $H_2(g)$ less than, greater than, or equal to the pressure in the container holding the $N_2(g)$? Justify your answer.
 - (b) What is the average kinetic energy of the $H_2(g)$ molecules?
 - (c) The molecules of which gas, N_2 or H_2 , have the greater average speed? Justify your answer.
 - (d) What change could be made that would decrease the average kinetic energy of the $N_2(g)$ molecules in the container?
 - (e) If the volume of the container holding the $H_2(g)$ was decreased to 0.50 L at 298 K, what would be the change in each of the following variables? In each case, justify your answer.
 - (i) The pressure within the container
 - (ii) The average speed of the $H_2(g)$ molecules


6/00 The pressure in the container nolding the 1/2(9) is
equal to the pressure in the container holding the N2(9)
This is supported by the ideal gas law PV=nRt: if
the volume, the temperature, and the number of
moles is the same, than the pressure must also
be equal
·
HE. CO UP TO THE TO SEE THE SE
= 30138/40-23/(208)
120
The average kinetic energy of the H2(g) molecules is
6.2 ×10-21 J - the H2(g) is at the same temperature as
OO ON TO THE NEXT PAGE


-24-

ADDITIONAL PAGE FOR ANSWERING QUESTION 6.

the Nz(g) so that the overage kinetic energy of
the anolecules must be the same.
(c) $V_{rms} = \sqrt{\frac{3kT}{m}}$ $H_2: 0.10(\frac{2g}{nol}) = 0.20g$.
$N_2: 0: 0: (28g) = 108 2.8g$
The average speed mot)
of the H2(q) indecules is greater, as they have a
smaller mass than use molecules of 12(9).
maller mass than one molecules of 12(g). This is supported by the equation: Urms 13kT?
(d) The volume could be decreased, so that according to KG = ½mv², the Kinetic energy would decrease.
(e) (1) The pressure within the container would
imrease according to P,V, P,V if the
T, =
temperature is kept constant, this becomes
P, V, = P, V2 so that if the volume is decreased
the pressure must increase
(ii) The average speed coords remain the
same because the temperature remains
Constant.
`

BBBBBBBBBBBB

- 6. Consider two containers of volume 1.0 L at 298 K, as shown above. One container holds 0.10 mol $N_2(g)$ and the other holds 0.10 mol $H_2(g)$. The average kinetic energy of the $N_2(g)$ molecules is 6.2×10^{-21} J. Assume that the $N_2(g)$ and the $H_2(g)$ exhibit ideal behavior.
 - (a) Is the pressure in the container holding the $H_2(g)$ less than, greater than, or equal to the pressure in the container holding the $N_2(g)$? Justify your answer.
 - (b) What is the average kinetic energy of the $H_2(g)$ molecules?
 - (c) The molecules of which gas, N_2 or H_2 , have the greater average speed? Justify your answer.
 - (d) What change could be made that would decrease the average kinetic energy of the $N_2(g)$ molecules in the container?
 - (e) If the volume of the container holding the $H_2(g)$ was decreased to 0.50 L at 298 K, what would be the change in each of the following variables? In each case, justify your answer.
 - (i) The pressure within the container
 - (ii) The average speed of the $H_2(g)$ molecules

G. a. The pressure in the container holding. Hz (q) is
egual to the pressure in the container holding
equal to the pressure in the container holding. No (9) because P = TET and N, R, T,
and v for both Nz(a) and Hz (a) are
eaval.
b. Ks per molerule = 1/2 (.2 g)(1)2
= 0.1
a The molecules of Hz have the arreatest overage
speed because the lighter the molecule
(42's motor moss is 2.016 a while Nz's
moder mass is 28 g) the faster its speed.
d. To decrease the overage Kinetic energy of
maar moss is 28g) the faster its speed. d. To decrease the average Kinetic energy of the Nz(g) molecules in the container, we

BBBBBBBBBBBB

ADDITIONAL PAGE FOR ANSWERING QUESTION 6.

_
could decrease the volume.
e. i. Pressure would increase because P = nRT/y. Pressure and volume
P = nRT/y Pressur and volume
one murishy related if one does
up the other must come down.
ii. The overage speed of Hz
molecules Maula tinamase because
when the volume is decreased the
pressure on the aas molecules
when the volume is decreased the pressure on the gas molecules increases and forces them to
move even forster.
·

7A,

BBBBBBBBBBBB

Answer EITHER Question 7 below OR Question 8 printed on page 28. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 15 percent.

7. Answer the following questions about thermodynamics.

Substance	Combustion Reaction	Enthalpy of Combustion, ΔH_{comb}° , at 298 K (kJ mol ⁻¹)
$H_2(g)$	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	-290
C(s)	$C(s) + O_2(g) \rightarrow CO_2(g)$	-390
CH ₃ OH(<i>l</i>)	$CH_3OH(e) + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(e)}$	-730

- (a) In the empty box in the table above, write a balanced chemical equation for the complete combustion of one mole of CH₃OH(*l*). Assume products are in their standard states at 298 K. Coefficients do not need to be whole numbers.
- (b) On the basis of your answer to part (a) and the information in the table, determine the enthalpy change for the reaction $C(s) + H_2(g) + H_2O(l) \rightarrow CH_3OH(l)$.
- (c) Write the balanced chemical equation that shows the reaction that is used to determine the enthalpy of formation for one mole of $CH_3OH(l)$.
- (d) Predict the sign of ΔS° for the combustion of $H_2(g)$. Explain your reasoning.
- (e) On the basis of bond energies, explain why the combustion of $H_2(g)$ is exothermic.

b)
$$C_{(5)} + O_{2(g)} = CO_{2(g)}$$
 $H_{2(g)} + \frac{1}{2}O_{2(g)} \Rightarrow H_{2}O_{(p)}$
 $2H_{2}O_{(p)} + CO_{2(g)} \Rightarrow CH_{3}OH_{(p)} + \frac{3}{2}O_{2(g)} \Rightarrow H_{3} = 730 \text{ kJ}$
 $C_{(3)} + H_{2(g)} + H_{2}O_{(p)} \Rightarrow CH_{3}OH_{(p)} \Rightarrow OH = \Delta H_{1} + \Delta H_{2} + \Delta H_{3} = -390 - 290 + 730$
 $= 50 \text{ kJ}$

c) $C_{(5)} + 2 H_{2(g)} + \frac{1}{2}O_{2(g)} \Rightarrow CH_{3}OH_{(p)}$

d) It is negative. Initially we have one and a half modes of

ADDITIONAL PAGE FOR ANSWERING QUESTION 7.

gaseous moles, and then we end up with one mole of liquid
water. Gases have more positional entropy than liquids. Since entropy
of the system decreases (as a so is negative.
e) att = E & bands broken - E & bands formed
in the combustion of one mole of Hz we are breaking
one mole of H-H bonds and half at a mole of O-O bonds
We are forming two n O - H bonds
the energy stored in 2,0-H bonds is greater than that stored
in one mole of H-H binds and half a mole of 0-0 lend binds
EE bonds formed > EE bonds broken
consequently att < 0 and the reaction is exothermic
·
-

Answer EITHER Question 7 below OR Question 8 printed on page 28. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 15 percent.

7.\Answer the following questions about thermodynamics.

Substance	Combustion Reaction	Enthalpy of Combustion, ΔH_{comb}° , at 298 K (kJ mol ⁻¹)
H ₂ (g)	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	-290
C(s)	$C(s) + O_2(g) \rightarrow CO_2(g)$	-390
CH ₃ OH(l)	CH30H(1) 1202(9) > CO2(9) +2H20(1)	730

- (a) In the empty box in the table above, write a balanced chemical equation for the complete combustion of one mole of CH₃OH(l). Assume products are in their standard states at 298 K. Coefficients do not need to be whole numbers.
- (b) On the basis of your answer to part (a) and the information in the table, determine the enthalpy change for the reaction $C(s) + H_2(g) + H_2O(l) \rightarrow CH_3OH(l)$.
- (c) Write the balanced chemical equation that shows the reaction that is used to determine the enthalpy of formation for one mole of $CH_3OH(l)$.
- (d) Predict the sign of ΔS° for the combustion of $H_2(g)$. Explain your reasoning.
- (e) On the basis of bond energies, explain why the combustion of $H_2(g)$ is exothermic.

a) CH3OH (e) + 302(g) -> CO2(g) + 2H2O(e)
b) Conto + 2400 (1) > 3 org) + CH3 OH (1) AH=+730 1/1/10
(U) + O219) - CO219) NH = -390 KJ/md
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
H2(9)+ C(s)++12(9) -> C++30+ (1) is the reaction we get using Hess' law. According to the same 10 wagain, by adding the st values we can coluite the enthalpy innge for the orball reaction
get using Hess' law. According to the same law again, by adding
the of values we can colculate the enthalpy change for the oceal reaction
$\Delta H = 730 - 390 - 290$
- 10H = 50 KJ [mol]

ADDITIONAL PAGE FOR ANSWERING QUESTION 7.

c) Attemp = Att products - Att reactionts = Att (co2) + [Att (H2O)] 2 - Att CH3OH
comb! Compustion f: formation
TOHOF CHOOH = DHOF (COD) + 2[DHOF (HOD)] - DHOCOMB. CHOOH)
d) When we heat H2(9), combustion occurs and the reaction results in the formation of the which is usual. Since the entropy of gases is higher than that of the liquid substances, a decrease in the entropy is seen. Therefore, as is regative (-).
$\Delta S^{\circ} = Sproducts - Sreactants = \bigcirc$
e) $H_{2}(g) + (5)O_{2}(g) \rightarrow H_{2}O(U)$ 307d, $H-H$ 0-0 H 10-0) 0 0 $2(H-0)$
In order to break bonds, energy is needed. In mis case, the apposite is present. There are new bonds formed for the formation of the therefore, energy is released. This means that energy is released as the bonds are formed, which means that the exothermic.

Answer EITHER Question 7 below OR Question 8 printed on page 28. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 15 percent.

7. Answer the following questions about thermodynamics.

Substance	Combustion Reaction	Enthalpy of Combustion, ΔH_{comb}° , at 298 K (kJ mol ⁻¹)
H ₂ (g)	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	-290
C(s)	$C(s) + O_2(g) \rightarrow CO_2(g)$	-390
CH ₃ OH(<i>l</i>)	CH30H(e)+302(g) CO216,2H	وي) -730

- (a) In the empty box in the table above, write a balanced chemical equation for the complete combustion of one mole of CH₃OH(*l*). Assume products are in their standard states at 298 K. Coefficients do not need to be whole numbers.
- (b) On the basis of your answer to part (a) and the information in the table, determine the enthalpy change for the reaction $C(s) + H_2(g) + H_2O(l) \rightarrow CH_3OH(l)$.
- (c) Write the balanced chemical equation that shows the reaction that is used to determine the enthalpy of formation for one mole of $CH_3OH(l)$.
- (d) Predict the sign of ΔS° for the combustion of $H_2(g)$. Explain your reasoning.
- (e) On the basis of bond energies, explain why the combustion of $H_2(g)$ is exothermic.

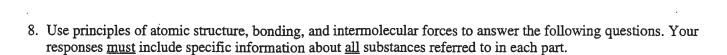
a)
$$CH_3OH_{(1)} + \frac{3}{2}O_{2(g)} - 7CO_{2(g)} + 2H_2O_{(2)}$$
b) $AH^0 = AH(CH_3OH) - (AH(C) + AH(H_1) + AH(H_2O))$
 $AH^0 = S$ products $AH - S$ reactants AH
 $HESC'Law:$
 $AH - \frac{1}{2}Q_0$
 $CH_3OH_{12} + \frac{1$

ADDITIONAL PAGE FOR ANSWERING QUESTION 7.

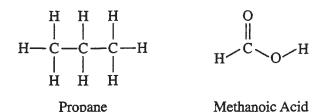
(1)
C) $H_{2}(g) + C_{(s)} + H_{2}O(g) \longrightarrow CH_{3}OH(g)$
d) $\Delta H - \Delta S(T) = \Delta G$ ΔG deterimes spontenacty $\Delta H = t$ of Reaction
DH: + of Reaction
(T) - (T)(A8K) = A6 The spontaneous in
$+ = \Delta G$ forward direction
AS POSITIVE
e) Hzg, isexotermic because Hz is non-polar with a London Forces Intermoleculator
with a London Forces Intermoleculator
attractive force
·
· · · · · · · · · · · · · · · · · · ·

- 8. Use principles of atomic structure, bonding, and intermolecular forces to answer the following questions. Your responses <u>must</u> include specific information about <u>all</u> substances referred to in each part.
 - (a) Draw a complete Lewis electron-dot structure for the CS₂ molecule. Include all valence electrons in your structure.
 - (b) The carbon-to-sulfur bond length in CS₂ is 160 picometers. Is the carbon-to-selenium bond length in CSe₂ expected to be greater than, less than, or equal to this value? Justify your answer.
 - (c) The bond energy of the carbon-to-sulfur bond in CS₂ is 577 kJ mol⁻¹. Is the bond energy of the carbon-to-selenium bond in CSe₂ expected to be greater than, less than, or equal to this value? Justify your answer.

(d) The complete structural formulas of propane, C_3H_8 , and methanoic acid, HCOOH, are shown above. In the table below, write the type(s) of intermolecular attractive force(s) that occur in each substance.


Substance 1	Boiling Point	Intermolecular Attractive Force(s)
Propane	229 K	Vander Whals (bondon dispersion)
Methanoic acid	374 K	Hydrogen bording bordondispession

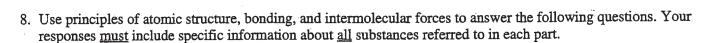
(e) Use principles of intermolecular attractive forces to explain why methanoic acid has a higher boiling point than propane.


α) $\dot{s} = c = s$.
b) The being structure for CSez is:
•
:Se=C=Se;
which is similar to he Lewis Structure for
(Sa, & however, since he se atom is slightly
bigger in radius that the S. Wom, its bond length will be slightly longer.
will be slightly longer

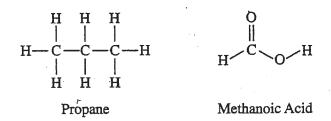
ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

c) The bond energy of CSe, should be less, since we
determines in (b) that the C-se bond is slightly
longer than the C-S bord, makeing it slightly
neaker trus requiring less energy to break it bord
energy).
de en page
e) since methodoic and is bonded by the relatively
Etrong intermolecular atorachie force of hydrogen
bonding (dysle attraction which is abnormally
shong with F, N,40 -d H), it requires more energy
to change its phase by breaking the bonds than
propune, which is bonded by the relatively
weak lordon dis parsion Forces!

- (a) Draw a complete Lewis electron-dot structure for the CS₂ molecule. Include all valence electrons in your structure.
- (b) The carbon-to-sulfur bond length in CS_2 is 160 picometers. Is the carbon-to-selenium bond length in CSe_2 expected to be greater than, less than, or equal to this value? Justify your answer.
- (c) The bond energy of the carbon-to-sulfur bond in CS_2 is 577 kJ mol⁻¹. Is the bond energy of the carbon-to-selenium bond in CSe_2 expected to be greater than, less than, or equal to this value? Justify your answer.


(d) The complete structural formulas of propane, C_3H_8 , and methanoic acid, HCOOH, are shown above. In the table below, write the type(s) of intermolecular attractive force(s) that occur in each substance.

Substance:	Boiling Point	Intermolecular Attractive Force(s)
Propane	229 K	London Dispersion Force (LDF).
Methanoic acid	374 K	H-bonding and LDF.
		j


(e) Use principles of intermolecular attractive forces to explain why methanoic acid has a higher boiling point than propane.

a). $: s = c = s$.				
L). · C52	Cse.			
s = C= S	Se=C=Se			
They should his	eve equal length	, become	they	both exhibit
the editable	trear mulecular	ctructure bunds be	sul tween	have +=== atoms,

	ADDITIONAL PAGE FOR ANSWERING QUESTION 8.
c).	Then C-se bund in Csea should be so less than the C-s
	bond in CS2.
	It's became the se atom has a bisser size than setom refer to the equation E= QQz I longer discionce between atoms should result in a smaller bond every.
	refer to the equation E: also I longer dictionce between
	ating should recult in a smaller bond every
 .	
e).	Methanoic Kerd Propane
	H-C-6-c-H
<u></u>	THE THE
	Pl Volumen in the second of th
	0 moding 11-C c - c-11
	C H H
	H'O'
A	5 the Intermolecular force of Methanorc acid is H-bunding 21
7	OF (mainly fi-bunday) which is a much stonger being bunday e than the LDF in Propose mulecules.
A.	e than the LDF in Propane mulecules.
7	The a state of the state of the
- t	which the barbonds in order to go to gas state.
	TICKE TO DE BONAS IN CORRESTO JO TO JOS STORES

- (a) Draw a complete Lewis electron-dot structure for the CS₂ molecule. Include all valence electrons in your structure.
- (b) The carbon-to-sulfur bond length in CS₂ is 160 picometers. Is the carbon-to-selenium bond length in CSe₂ expected to be greater than, less than, or equal to this value? Justify your answer.
- (c) The bond energy of the carbon-to-sulfur bond in CS₂ is 577 kJ mol⁻¹. Is the bond energy of the carbon-to-selenium bond in CSe₂ expected to be greater than, less than, or equal to this value? Justify your answer.

(d) The complete structural formulas of propane, C_3H_8 , and methanoic acid, HCOOH, are shown above. In the table below, write the type(s) of intermolecular attractive force(s) that occur in each substance.

Satisticanos :	Bering Pani.	: : : : : : : : : : : : : : : : : : :
Propane	229 K	London dispersion
Methanoic acid	374 K	H-banding, Dipole-Dipole, + Lundon Dispersion

(e) Use principles of intermolecular attractive forces to explain why methanoic acid has a higher boiling point than propane.

a.	4 + 6 + 6 = 16
	is -c = s:
b .	. The bond tength in CSe, should
	.The bond length in (Se, should :Se = C=Se: be the same as in CS, because they are identical bond structures
	they are identical bond structures

BBBBBBBBBBB

ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

greater because it so is a larger otom than s.
preater because it so is a larger atom than s.
and therefore has more protons + a stronger
hold on its electrons.
Thola on 173 electrons,
d. on chert
e. Methanoic acid has a higher boiling point than propane because Hydrogen bonding is the strongest of all intermolecular forces + is therefore the
propage because Hydrogen bonding is the strongest
of all intermalecular forces + is therefore the
hardest to break a north Propose doesn't
hordest to break apart. Propane doesn't even have any dipole moments to keep it attracted Methanopic acid is therefore much harder to
even have any apple moments to reep it attracted
Methanodic ación is Therefore Much harder to
break.