

AP[®] Chemistry 2005 Sample Student Responses

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,700 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three and a half million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2005 by College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. Admitted Class Evaluation Service, CollegeEd, Connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the Cornerstones are trademarks owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship Corporation. Other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: http://www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.

AP Central is the official online home for the AP Program and Pre-AP: apcentral.collegeboard.com.

ADDITIONAL PAGE FOR ANSWERING QUESTION 1.

ADDITIONAL PAGE FOR ANSWERING QUESTION 1.
1. a) Ka = [H+][C3H50z] = 1.34x10-5
D) [H+] [C3 H502] = 1.34 × 10-5
$X = [H^{+}] = [C_3 H_5 O_2]$ $X^2 = 3.55 \times 10^{-6}$
109(1) 111 2.12
C) Na(3H502 + HC3 H502 -7
Na = 23 . 6.665 mols 6.213 mols
$C = 12 \times 3 = 36 = 0.018 \text{ mols}$ $H = 1 \times 5 = 5 = 100.365 \text{ mols}$
$H = 1 \times 5 = 5$ $0 = 16 \times 2 = 32$ = i) 0.365m C3H502
MW=96
0.496 - 0.005 mc/s 50nl x 6.265M = 0.013 mols HC34502 96 Nac3 H502 1000
11) 0.013 mols HC3H5O2 - 0.005 mols Na C3 H5O2
= 0.008 mols H
T= 0.16M Ht
d)i)Kb = [0H][HCOzH] X= [0H]=4.18×10-6m=[HCOzH]
LHCO2J=X
$= (4.18 \times 10^{-6})^{2} = 15.65 \times 10^{-11} = 12.65 \times 10^{-11} = 12.65$
$\frac{11) k_a = 1 \times 10^{-14} = 1.77 \times 10^{-4} = k_a}{5.65 \times 10^{-11}}$
e) Propanoid acid is stronger because it has a lower pH

	HC3H5O2 = C3H5O2 - + H+	
/	C3H5O2][H+] [HC3H5O2]	
_b) pH	= -log[1+CzHsOz] -log[0.265] [pH = 0.677]	
<u>c)</u>	$\frac{\text{H } C_3 \text{H } S_2 \xrightarrow{?} C_3 \text{H } S_2 \xrightarrow{?} + \text{H}^{+}}{.265} .103 \text{ M} \cdot S_2 \xrightarrow{?} + \text{X} \times \times$	V
E	, 265 , 103 3.45×10=5	103M NaC3H50=
1 .) $3.45 \times 10^{-5} M$ $\chi = 3.$	45 ×10-5
d) c		×10-6
K. 2 (0	HJ[HB+] [4.18×10-6][N
	[HA] POH = PKo + log CHB	
-) meth	anoic acid is stronger because	s. it has
	anoic acid is stronger because	SCIT NAS

2A,

Answer EITHER Question 2 below OR Question 3 printed on page 16. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 20 percent.

- 2. Answer the following questions about a pure compound that contains only carbon, hydrogen, and oxygen.
 - (a) A 0.7549 g sample of the compound burns in $O_2(g)$ to produce 1.9061 g of $CO_2(g)$ and 0.3370 g of $H_2O(g)$.
 - (i) Calculate the individual masses of C, H, and O in the 0.7549 g sample.
 - (ii) Determine the empirical formula for the compound.
 - (b) A 0.5246 g sample of the compound was dissolved in 10.0012 g of lauric acid, and it was determined that the freezing point of the lauric acid was lowered by 1.68°C. The value of K_f of lauric acid is 3.90°C m^{-1} . Assume that the compound does not dissociate in lauric acid.
 - (i) Calculate the molality of the compound dissolved in the lauric acid.
 - (ii) Calculate the molar mass of the compound from the information provided.
 - (c) Without doing any calculations, explain how to determine the molecular formula of the compound based on the answers to parts (a)(ii) and (b)(ii).
 - (d) Further tests indicate that a $0.10\,M$ aqueous solution of the compound has a pH of 2.6. Identify the organic functional group that accounts for this pH.

Question 2	
a) (i) mass of C: 1,9061 g ($\frac{1 \text{ mol } CO_2}{44.01 \text{ g } CO_2} \times \frac{1 \text{ mol } C}{1 \text{ mol } CO_2} \times \frac{12.01 \text{ g } C}{1 \text{ mol } CO_2}$
	016 g C
mass of H: 0.3370 g	H ₂ O × 1 mol H ₂ O × 2 mol H 1.01 g H 18.02 g H ₂ O 1 mol H ₂ O × 1 mol H
= 0.03	
mass of $0 = 0.7549 g$ = $0.1970 g$	- 0.52016 g - 0.03778 g
(ii) moles $C = 0.52016 g$ (moles $H = 0.03778 g$	$C \times \frac{1 \text{ mol } C}{12.01 \text{ g C}} = 0.043311 \text{ mol } C$ $H \times \frac{1 \text{ mol } H}{1.01 \text{ g H}} = 0.03741 \text{ mol } H$
	$\times \frac{1 \mod 0}{16 \mod 0} = 0.01231 \mod 0$
$\left(\begin{array}{c}0.043311\\\hline0.01231\end{array}\right)\left(\begin{array}{c}0.03741\\\hline0.01231\end{array}\right)\left(\begin{array}{c}0\\\hline0\end{array}\right)$	$C_{3.5} H_3 O \Rightarrow C_7 H_6 O_2$
	GO ON TO THE NEXT PAGE.

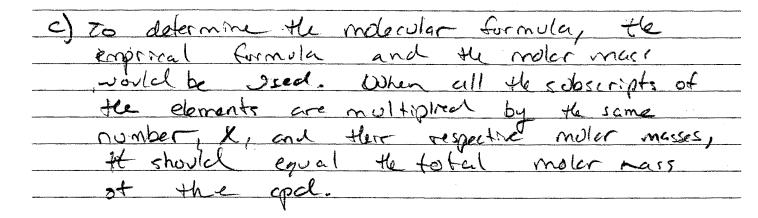
$b_{7}(i) \Delta T = K_{f} m$	-
1.68 °C = 3.90 °C/m (m)	
m = 0.431 molality	
(ii) 0.431 $\frac{\text{mol}}{\text{kg}} = \frac{0.5246 \text{ g compound}}{10.0012 \text{ g lauric acid}} \times \frac{10^3 \text{ g lauric acid}}{1 \text{ kg lauric acid}} \times \times = \frac{121.7 \text{ g / mol}}{10.0012 \text{ g lauric acid}} \times $	d * mol compound id * x g compound
C) Using the empirical formula from part (of find the empirical formula mass. Then directly mass found in part (b) (ii) by empirical formula mass. Multiply the employment by this quotient to obtain the mole formula.	irical
d) - 0	
-C carboxylic acid functional grou	up
Since the pH is less than 7, solution is acidic.	
· •	
	-

Answer EITHER Question 2 below OR Question 3 printed on page 16. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 20 percent.

- 2. Answer the following questions about a pure compound that contains only carbon, hydrogen, and oxygen.
 - (a) A 0.7549 g sample of the compound burns in $O_2(g)$ to produce 1.9061 g of $CO_2(g)$ and 0.3370 g of $H_2O(g)$.
 - (i) Calculate the individual masses of C, H, and O in the 0.7549 g sample.
 - (ii) Determine the empirical formula for the compound.
 - (b) A 0.5246 g sample of the compound was dissolved in 10.0012 g of lauric acid, and it was determined that the freezing point of the lauric acid was lowered by 1.68°C. The value of K_f of lauric acid is 3.90°C m^{-1} . Assume that the compound does not dissociate in lauric acid.
 - (i) Calculate the molality of the compound dissolved in the lauric acid.
 - (ii) Calculate the molar mass of the compound from the information provided.
 - (c) Without doing any calculations, explain how to determine the molecular formula of the compound based on the answers to parts (a)(ii) and (b)(ii).
 - (d) Further tests indicate that a 0.10 M aqueous solution of the compound has a pH of 2.6. Identify the organic functional group that accounts for this pH.

·	
α) ::	*
g = (1.9061g esz) (Imotesz) (Imotesz) (Imotesz) (12019() = 0.5202gc)
1 motto2) (2 mg) 1 (16,009)	
g D = (1.9061g Coz) (motoz) (motoz) (16.00g s)) + (0,3370g Hzo) (18,02g Hzo) (Ind Hzo)
×(1000) = (165590)	
g H = (0.337g Hz0) (18.02 gHz0) (2 mat Hz)(1.013 H) = 0.03778 gH
·	
ii) mo) (= 0.52 02g (12.01mo) = 0.0433	mol C
$m_0/0 = 1.685 graphi (\frac{1m_0}{16.000}) = 0.1053$	
mol H = 0.037789 (1001) = 0.0374	
J. J	ā·
divide all by 8.	0,03741
Cotable & 15 mg C	
=\25/me/\d = 3 mol 0	
~ Ste month ~ [mon] H	

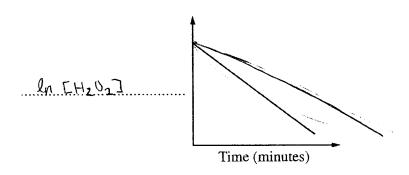
PCZHINDS C3 H206
3126
b);) &tc, = k. m 1.68°= 3.90° c m' (m)
m=(0.431)
kg acid = 0,431 = 0,43
mods sample = 0.43 100 (10.0012g) (1000g)
= 4.31 x10 3 mols
$molar mass = \frac{9}{m_1}$
$= \frac{0.5246g}{4.31 \times 10^{-3} \text{ mol}} = \left[1229/\text{mol}\right]$
The state of the s
c) Find the molar was of the empirical formula
- Divide the molar mass determined in 10(11) by the molar mass of
- Multiple the result to the standard bytan and over atoms
- Multiply the result to # of carbon, hydrogen, and Oxygen atom
d) - COOH group
- carboxyl group


Answer EITHER Question 2 below OR Question 3 printed on page 16. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 20 percent.

- 2. Answer the following questions about a pure compound that contains only carbon, hydrogen, and oxygen.
 - (a) A 0.7549 g sample of the compound burns in $O_2(g)$ to produce 1.9061 g of $CO_2(g)$ and 0.3370 g of $H_2O(g)$.
 - (i) Calculate the individual masses of C, H, and O in the 0.7549 g sample.
 - (ii) Determine the empirical formula for the compound.
 - (b) A 0.5246 g sample of the compound was dissolved in 10.0012 g of lauric acid, and it was determined that the freezing point of the lauric acid was lowered by 1.68°C. The value of K_f of lauric acid is 3.90°C m^{-1} . Assume that the compound does not dissociate in lauric acid.
 - (i) Calculate the molality of the compound dissolved in the lauric acid.
 - (ii) Calculate the molar mass of the compound from the information provided.
 - (c) Without doing any calculations, explain how to determine the molecular formula of the compound based on the answers to parts (a)(ii) and (b)(ii).
 - (d) Further tests indicate that a 0.10 M aqueous solution of the compound has a pH of 2.6. Identify the organic functional group that accounts for this pH.

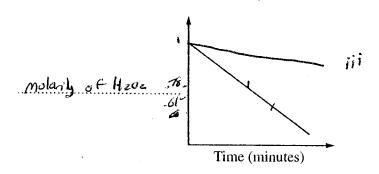
a) i) .7549a (.H.O 1.9061a (O) /444/mol = .0433 mol
a) i) .7549 g (H, O 1.906) g (O2 /44 g/mol = .0433 mol .3300 g H20 /18 g/mol = .0187 mo .0433 mol (O2 = /2 g/mol = .5196 g C) .017) mol H2O = 1 g/mol = .0187 g H .7549 g - (.546+.017) = .2166 g O
.0433 mul (O2 + 12 g/mol = 5196 a C)
017) mul 400 = 19/mol = 0177 g H
7549 a-(.546+.017) = .2166 a 0
i) .5196 g C/12 g/mol = .0433 mol C/10185 = 3.20) =
.0187 9 H/1 g/mol = .0157 mol H/.0185 = 1.38 -
-21/96 a 0/16 a lovel = -0135 mol 0/0135 = 1 =
C2 H4 O2

ADDITIONAL PAGE FOR ANSWERING QUESTION 2.


b) i)
$$m = \frac{mo!}{kg} = \frac{mo!}{.0100012 \, kg}$$

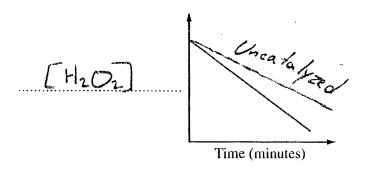
$$[H^{+}] = ankloy - 2.6 = .0025$$

	Amir	re	


(c) During the analysis of the data, the graph below was produced.

- (i) Label the vertical axis of the graph.
- (ii) What are the units of the rate constant, k, for the decomposition of $H_2O_2(aq)$?
- (iii) On the graph, draw the line that represents the plot of the <u>uncatalyzed</u> first-order decomposition of $1.00\,M$ H₂O₂(aq).

a. () Experiment 1452
[II] is first order)
(i) .156= K[.017] [.015] .262=1.0625[.246]
.596 = KC.0167 1.067 246 = -246 4 7 = 1
[[c10] is first order]
h. i) Rate = K[I]'[CIO]')
(i) 156=KEONJEOISJ'
$k = (0.11 \text{ M}^{-1}\text{s}^{-1})$
c. i) SEF GRAPH
ii) 1st order so units of k are s'
ii) SEE GRAPH
•


(c) During the analysis of the data, the graph below was produced.

- (i) Label the vertical axis of the graph.
- (ii) What are the units of the rate constant, k, for the decomposition of $H_2O_2(aq)$?
- (iii) On the graph, draw the line that represents the plot of the <u>uncatalyzed</u> first-order decomposition of $1.00\,M$ H₂O₂(aq).

I and 2 triples the rate of the reaction,
thus its rate order is
ico Quadrapling the concentration of Clo- in experiment
I and 3 paises the area by about 4 how Their rate order equals
4x = 3.82 x eg 4 = 10, 8.52, x = .967 Since deciresing
Sing [1] by of it decrease the initial rate by small extent, rate order to close
(5) i rate = K(1-) [c/0-7]
ii h = [c17] [c15] - K =0.002 M-15-1
.156 L-15-1
Gii k=5-1
iii see graph

(c) During the analysis of the data, the graph below was produced.

- (i) Label the vertical axis of the graph.
- (ii) What are the units of the rate constant, k, for the decomposition of $H_2O_2(aq)$?
- (iii) On the graph, draw the line that represents the plot of the <u>uncatalyzed</u> first-order decomposition of $1.00 \, M \, H_2O_2(aq)$.

3. @ (i) I is first order because as the concentration
of I triples the route triples as well. (ii) CIO rates [I][CIO] CIO is O order has
(ii) C10 rates [I][C10] C10 is 0 order has
rate = [I] [CIO] no effect on the rute like
.476 (.652) (.015)× I- does
,596 (1016) (1061)×
.799 = 3\25 × (.0(5)*
335 225 (Nol)*
246 = 6015 × 246 = .246 (x-x) = 0
Oli)rate = K[CIO][I]
(ii) 476 mol/4.5 = K(1(.052) mol/22
,052 mol ² /2
K=9.15 -/mol.s
The state of the s

ADDITIONAL PAGE FOR ANSWERING QUESTION 3.

O(i)
on graph
Time
(ii) mol/L·min
(ii) mol/L·min (iii) on graph in front of page
· · · · · · · · · · · · · · · · · · ·
·
-
-

USE THIS PAGE FOR ANSWERING QUESTION 4.
PLEASE WRITE THE LETTER FOR THE REACTION IN THE SQUARE AT THE
LEFT END OF EACH BOX. ONLY THE ANSWERS IN THE BOXES WILL BE SCORED.

$$\alpha$$
 $Zn + Ni^{2+} \rightarrow Zn^{+2} + Ni$

b
$$AI(DH)_3 + OH^- \rightarrow AI(DH)_4^-$$

$$C \qquad C_2H_2 + O_2 \rightarrow CO_2 + H_2O$$

$$f BF_3 + NH_3 \longrightarrow BF_3NH_3$$

USE THIS PAGE FOR ANSWERING QUESTION 4.
PLEASE WRITE THE LETTER FOR THE REACTION IN THE SQUARE AT THE
LEFT END OF EACH BOX. ONLY THE ANSWERS IN THE BOXES WILL BE SCORED.

a. Zn (s) + Ni+2+N/03 - -> 2n+2+N/03 + Ni

d. (aCO3+H++C2H3O2->H2O+CO2+Ca++C2H3O2-

e. Lithz > LizN

F BF3+NH3 > F3B:NH3

g. SO3+ Na++ OH- > Na20+H20+502

USE THIS PAGE FOR ANSWERING QUESTION 4.
PLEASE WRITE THE LETTER FOR THE REACTION IN THE SQUARE AT THE LEFT END OF EACH BOX. ONLY THE ANSWERS IN THE BOXES WILL BE SCORED.

$$\bigcirc Pb^{2+} + I^- \rightarrow PbI_2$$

$$\bigcirc$$
 SO₃ + OH⁻ → H₂O + S²⁻

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 24. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

- 5. Answer the following questions that relate to laboratory observations and procedures.
 - (a) An unknown gas is one of three possible gases: nitrogen, hydrogen, or oxygen. For each of the three possibilities, describe the result expected when the gas is tested using a glowing splint (a wooden stick with one end that has been ignited and extinguished, but still contains hot, glowing, partially burned wood).
 - (b) The following three mixtures have been prepared: CaO plus water, SiO₂ plus water, and CO₂ plus water. For each mixture, predict whether the pH is less than 7, equal to 7, or greater than 7. Justify your answers.
 - (c) Each of three beakers contains a 0.1 M solution of one of the following solutes: potassium chloride, silver nitrate, or sodium sulfide. The three beakers are labeled randomly as solution 1, solution 2, and solution 3. Shown below is a partially completed table of observations made of the results of combining small amounts of different pairs of the solutions.

om pan		AgNOZ	NazS	KCI
		Solution 1	Solution 2	Solution 3
A-51-203	Solution 1		A 5.25 black precipitate	AgCI
Nas	Solution 2			no reaction
KCI	Solution 3			

KCI AGNO3 Nows

- (i) Write the chemical formula of the black precipitate.
- (ii) Describe the expected results of mixing solution 1 with solution 3.
- (iii) Identify each of the solutions 1, 2, and 3.

a) The splint would extinguish in nitrogen gas,
a) The splint would extinguish in nitrogen gas, burn nicely in oxygen gas, or make a popping noise in hydrogen gas.
noise in hydrogen gas.
b) CaO + H2O -> Ca(OH) -> Ca+ 2OH
Cao would have a pH greater than 7 since
Cao would have a pH greater than 7 since metal oxides form bases in water

BBBBBBBBBBB

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.

SiOz (sand/quartz) is not dissolvable in water.
Therefore, the pH would not change and remain
neutral at 7
CO2+H2O-7H++HCO3
Carbon dioxide can hydrolyze in water to form
HzCoz, which can then dissociate to form an
acid with a pH less than 7.
C.i Ag25
ii A precipitate would form due to:
u A precipitate would form due to.
Agt +CI -> AgCI
iii. I - AgNOz
II - Na,5
亚 1962
·

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 24. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

- 5. Answer the following questions that relate to laboratory observations and procedures.
 - (a) An unknown gas is one of three possible gases: nitrogen, hydrogen, or oxygen. For each of the three possibilities, describe the result expected when the gas is tested using a glowing splint (a wooden stick with one end that has been ignited and extinguished, but still contains hot, glowing, partially burned wood).
 - (b) The following three mixtures have been prepared: CaO plus water, SiO_2 plus water, and CO_2 plus water. For each mixture, predict whether the pH is less than 7, equal to 7, or greater than 7. Justify your answers.
- (c) Each of three beakers contains a 0.1 M solution of one of the following solutes: potassium chloride, silver Ag(NO₂) nitrate, or sodium sulfide. The three beakers are labeled randomly as solution 1, solution 2, and solution 3. Shown below is a partially completed table of observations made of the results of combining small amounts of different pairs of the solutions.

			Ag 1003	Na25	EVENTER
			Solution 1	Solution 2	Solution 3
	Ag 103	Solution 1		black precipitate	
Na ₂ S	1701	Solution 2			no reaction
	KCI	Solution 3	49C1 (2)		

- (i) Write the chemical formula of the black precipitate.
- (ii) Describe the expected results of mixing solution 1 with solution 3.
- (iii) Identify each of the solutions 1, 2, and 3.

5. @ If the gas were oxygen, the stick would glow brighter. If the
gas were hydrogen, a loud pop would be hurt. If the gas were
nitrogen, nothing would occur
(B) CaO ⇒ pH >7 CaOH is a strong base and thus this mixture
is basic.
SiOa ⇒ equal to 7 silicon dioxide is neither acidic nor basic
and thus the pH would be unaffected. PH of water
19 7 because H 15 neutral.

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.

	CO2	\Rightarrow	PH <	.7	Acid	s re	eact	WITH	Ca	rbon	ates	to f	<u>or</u> _N
	C	arbi	on d	iuxid	e ge	15; 0	ind t	heref	ore	COZ	is a	conj	uga
	b	ase.	The	soluti	on t	aeref	Ore	would	t be	acid	16.	· · · · · · · · · · · · · · · · · · ·	
©	<u>(i)</u>	Ag	a5										 -
		A	precip	Hate.	would	d forv	n (s	Ilver	chlor	ide)	AgC	162	
					1g N03								
					1a 25								
		501	ution	3 =	KCI			· 					<u>.</u>
				_,				···	* -				
	<u>.</u>								·		· · · · · · · · · · · · · · · · · · ·		
					·		· · · · · · · · · · · · · · · · · · ·						
					· · · · · · · · · · · · · · · · · · ·								
				<u>,</u>			······································						<u>-</u>
				 		· · · · · · · · · · · · · · · · · · ·							
				The state of the s			***						
			····				 						
			,										
													
				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
			······································										
				·····	······································								
				·									
	<u> </u>												
								,					
			· · · · · · · · · · · · · · · · · · ·										
								:					
								·····					
													
		,											

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 24. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

- 5. Answer the following questions that relate to laboratory observations and procedures.
 - (a) An unknown gas is one of three possible gases: nitrogen, hydrogen, or oxygen. For each of the three possibilities, describe the result expected when the gas is tested using a glowing splint (a wooden stick with one end that has been ignited and extinguished, but still contains hot, glowing, partially burned wood).
 - (b) The following three mixtures have been prepared: CaO plus water, SiO₂ plus water, and CO₂ plus water. For each mixture, predict whether the pH is less than 7, equal to 7, or greater than 7. Justify your answers.
 - (c) Each of three beakers contains a 0.1 M solution of one of the following solutes: potassium chloride, silver nitrate, or sodium sulfide. The three beakers are labeled randomly as solution 1, solution 2, and solution 3. Shown below is a partially completed table of observations made of the results of combining small amounts of different pairs of the solutions.

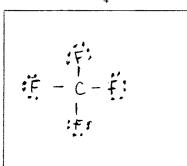
	Solution 1	Solution 2	Solution 3
Solution 1		black precipitate	
Solution 2			no reaction
Solution 3			

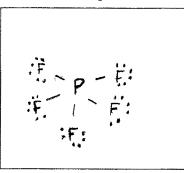
- (i) Write the chemical formula of the black precipitate.
- (ii) Describe the expected results of mixing solution 1 with solution 3.
- (iii) Identify each of the solutions 1, 2, and 3.

Ofer	Nit	i ed er	, th	e glo	wing	spli	nt.	W.U	go	out,	
For	Hydrog	en	and	Oxyge	in,	the	spli	my-	will	g low	brighter
@ (a)	11iw	l.e	greate	r than	7	beca	ușe-		-		
Ca	0 + H2	0 -	Cat	-OH	Y	y ag byyg bygg awyl M		*		TO SECURITION OF THE PARTY OF T	-
(0,	Wiw.	be	less	than	7	been	use	He	COE	is	
0.V	L acid	<u> </u>									
Sio	z will	be	equal	to 7	be	eause	it	s he	utra !	and	does

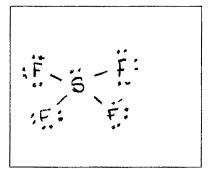
B B B B

5C2


ADDITIONAL PAGE FOR ANSWERING QUESTION 5.
not react with water.
OO Ag NO367 KC/60 AgC/6) + KNO369)
@ you would get K25 and Nat and Cltions
(iii) 1= KC1
Z = Aa NO3
3 = Na, S
:


6. Answer the following questions that relate to chemical bonding.

(a) In the boxes provided, draw the complete Lewis structure (electron-dot diagram) for each of the three molecules represented below.


 CF_4

PF₅

 SF_4

(b) On the basis of the Lewis structures drawn above, answer the following questions about the particular molecule indicated.

(i) What is the F-C-F bond angle in CF₄?

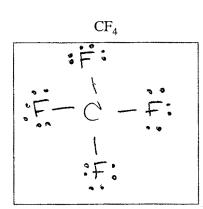
(ii) What is the hybridization of the valence orbitals of P in PF₅?

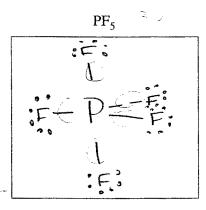
(iii) What is the geometric shape formed by the atoms in SF₄?

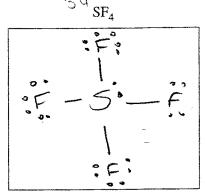
(c) Two Lewis structures can be drawn for the OPF₃ molecule, as shown below.

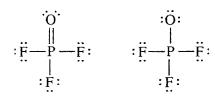
(i) How many sigma bonds and how many pi bonds are in structure 1?

(ii) Which one of the two structures best represents a molecule of OPF₃? Justify your answer in terms of formal charge.


b) j) 109.4


iii) See-Saw


ADDITIONAL PAGE FOR ANSWERING QUESTION 6. are 4 sigma bords and one fil Structure 1 best represents a molecule of OPF3 because all of its components have a formal while the Oxygen and Phosphorus in Structure respectively.


- 6. Answer the following questions that relate to chemical bonding.
 - (a) In the boxes provided, draw the complete Lewis structure (electron-dot diagram) for each of the three molecules represented below.

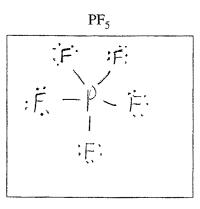
- (b) On the basis of the Lewis structures drawn above, answer the following questions about the particular molecule indicated.
 - (i) What is the F-C-F bond angle in CF₄?
 - (ii) What is the hybridization of the valence orbitals of P in PF₅?
 - (iii) What is the geometric shape formed by the atoms in SF₄?
- (c) Two Lewis structures can be drawn for the OPF₃ molecule, as shown below.

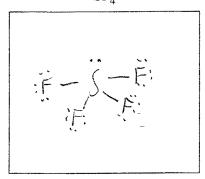
Structure 1

Structure 2

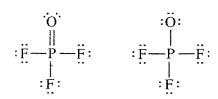
- (i) How many sigma bonds and how many pi bonds are in structure 1?
- (ii) Which one of the two structures best represents a molecule of OPF₃? Justify your answer in terms of formal charge.

(b) (i) 90°
(3) ≤ 0.34
(11) 500-50(.)




6Ba

(c) (i) 4 sigma bands I pi band (ii) strature 1 talve to its stable formal anarge of C. anarge of Valence = 5 5-5=0 Valence = 5	ADDITIONAL PAGE FOR ANSWERING QUESTION 6.
Central atom: P total	(C) (i) 4 sigma bonds 1 pi bond
Central atom: P total	(°) = 100 de 0 1 = 17
Central atom: P total	4 to 100 -1 000 -1 0100000 05
Valence = 5	Sicole round and a
Valence = 5	
Valence = 5	contral atom: P total
5-5=0	Valence = 5
	5-5=0



- 6. Answer the following questions that relate to chemical bonding.
 - (a) In the boxes provided, draw the complete Lewis structure (electron-dot diagram) for each of the three molecules represented below.

- (b) On the basis of the Lewis structures drawn above, answer the following questions about the particular molecule indicated.
 - (i) What is the F-C-F bond angle in CF_4 ?
 - (ii) What is the hybridization of the valence orbitals of P in PF₅?
 - (iii) What is the geometric shape formed by the atoms in SF₄?
- (c) Two Lewis structures can be drawn for the OPF₃ molecule, as shown below.

Structure 1

Structure 2

- (i) How many sigma bonds and how many pi bonds are in structure 1?
- (ii) Which one of the two structures best represents a molecule of OPF₃? Justify your answer in terms of formal charge.

b) (i) planer molecu	le so bondangle = 90°	
(11) 252pb	no electrons on 3rd level	
Uii) This molecul	e is square pyramidal, due to the uns	hared
electron pair		

GCa

B B B B B B B B B B B

ADDITIONAL PAGE FOR ANSWERING QUESTION 6.
Ol (i) In structure one, there are four sigma and one pi bond, because there are 3 single and I double bands (ii) Due to the symmetry of structure 2, it has a formal charge of zero. Therefore, it best represents a molecule
bond, because there are 3 single and I double bands
(ii) Due to the symmetry of structure 2, it has a formal
charge of zero. Therefore, it best represents a molecule
of OPF3.

Answer EITHER Question 7 below OR Question 8 printed on page 28. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 15 percent.

- 7. Use principles of atomic structure, bonding, and/or intermolecular forces to respond to each of the following. Your responses <u>must</u> include specific information about <u>all</u> substances referred to in each question.
 - (a) At a pressure of 1 atm, the boiling point of $\underline{NH_3(l)}$ is 240 K, whereas the boiling point of $NF_3(l)$ is 144 K.
 - (i) Identify the intermolecular force(s) in each substance.
 - (ii) Account for the difference in the boiling points of the substances.
 - (b) The melting point of KCl(s) is 776°C, whereas the melting point of NaCl(s) is 801°C.
 - (i) Identify the type of bonding in each substance.
 - (ii) Account for the difference in the melting points of the substances.
 - (c) As shown in the table below, the first ionization energies of Si, P, and CI show a trend.

Element	First Ionization Energy (kJ mol ⁻¹)
Si	786
P	1,012
Cl	1,251

- (i) For each of the three elements, identify the quantum level (e.g., n = 1, n = 2, etc.) of the valence electrons in the atom.
- (ii) Explain the reasons for the trend in first ionization energies.
- (d) A certain element has two stable isotopes. The mass of one of the isotopes is 62.93 amu and the mass of the other isotope is 64.93 amu.
 - (i) Identify the element. Justify your answer.
 - (ii) Which isotope is more abundant? Justify your answer.

a) 1. NH3: London dispersion, dipole/dipole, hydrogen bonding
NF3: London dispersion, dipole Idipole
ii. NHz can enter into hydrogen bonds which are the strongest
intermolecular force. The strongest intermolecular force of NF3
is dipole/dipole. More energy is needed to overcome the intermolecular
forces in NHz than NFz so it has a higher boiling point.

ADDITIONAL PAGE FOR ANSWERING QUESTION 7.

b) i. Both Substances (KCI and NaCI) are ionic substances. The cations and anions are held together in a lattice by ionic bonds
ii. the strength of an ionic bond depends on the magnitude of the charge as well as the distance between nuclei. Both KCI and NaCI have the same magnitude of charges (+1,-1), but Nat has a smaller ractius than Kt so the Nat and CIT ions can get closer together + form a stronger bond. Therefore more energy is needed to overcome the attractive force in NaCI which is why it has a higher melting point than KCI.

have valence electrons with the 3 elements you move across the periodic table the atomic radius of each element shellding remains the same effective nuclear charge increases which creates a Stronger pull on First ionization the valence electrons. CI because the nucleus Strongly on the valence electrons than the previous it takes the most energy element. therefore bit less for a P electron Si electron

an average mass of all the elements isotopes based on their abundance.

Copper's periodic tobbe mass is 63.55 amu which is the only element with a mass between 62.93 amu + 64.93 amu.

G2.93 isotope because copper's periodic tobbe mass's closer to 62.93 than it is to 64.93. Atomic mass-(mass isotope 1 × 76 abundance)+ (mass isotope 2 × 76 abundance) + (mass isotope 2 × 76 abundance) + (mass isotope 2 × 76 abundance)

Answer EITHER Question 7 below OR Question 8 printed on page 28. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 15 percent.

- 7. Use principles of atomic structure, bonding, and/or intermolecular forces to respond to each of the following. Your responses <u>must</u> include specific information about <u>all</u> substances referred to in each question.
 - (a) At a pressure of 1 atm, the boiling point of $NH_3(l)$ is 240 K, whereas the boiling point of $NF_3(l)$ is 144 K.
 - (i) Identify the intermolecular force(s) in each substance.
 - (ii) Account for the difference in the boiling points of the substances.
 - (b) The melting point of KCl(s) is 776°C, whereas the melting point of NaCl(s) is 801°C.
 - (i) Identify the type of bonding in each substance.
 - (ii) Account for the difference in the melting points of the substances.
 - (c) As shown in the table below, the first ionization energies of Si, P, and Cl show a trend.

Element	First Ionization Energy (kBmok_1)
Si	786
P	. 1,012
Cl	1,251

- (i) For each of the three elements, identify the quantum level (e.g., n = 1, n = 2, etc.) of the valence electrons in the atom.
- (ii) Explain the reasons for the trend in first ionization energies.
- (d) A certain element has two stable isotopes. The mass of one of the isotopes is 62.93 amu and the mass of the other isotope is 64.93 amu.
 - (i) Identify the element. Justify your answer.
 - (ii) Which isotope is more abundant? Justify your answer.

a) i) MH3- Hydrogen bonding, dipole-dipole forces
NF3-London dispersion forces, dipole-dipole forces
ii) The inhermolecular forces in NH3 are stronger from those in NF3.
it takes more energy to break the intermolecular forces
in NH3 than in NF3.00

7B2

ADDITIONAL PAGE FOR ANSWERING QUESTION 7.

Di) KCI - IONIC
Naci-jonic de la
ii) The valence electrons in Nat and CIT are on the same orbital,
so there is less distance between the two elements in Nacl than in
KCI, where Kt and CIT are on differents orbitals.
the valence electrons on
Since Nat and of are closer in Nacl than kt and or in Kol,
there is more attraction between the nucleus and the electr
in Nacl than in kel and Nacl is more relietant to
separate.
cli) si: n=3
P: n=3
cl:n=3
ii) The first ionization energy increases from lost to right of a period
because number of protons increase from left to right
while the electrons are at the same quantum level.
no the elements become more positive, it attracts the
electrons more strongly, so it becomes increasingly
difficult to vernous an electron.
di) copper . the average mass of the isotopes is between 62-93 am
and 64.95 ams. Copper is the only dement that meets this
restraint.
ii) The isotope with the mass of 64.93 is more abundant. Hs
mats is closer to the average mass.

Answer EITHER Question 7 below OR Question 8 printed on page 28. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 15 percent.

- 7. Use principles of atomic structure, bonding, and/or intermolecular forces to respond to each of the following. Your responses <u>must</u> include specific information about <u>all</u> substances referred to in each question.
 - (a) At a pressure of 1 atm, the boiling point of $NH_3(l)$ is 240 K, whereas the boiling point of $NF_3(l)$ is 144 K.
 - (i) Identify the intermolecular force(s) in each substance.
 - (ii) Account for the difference in the boiling points of the substances.
 - (b) The melting point of KCl(s) is 776°C, whereas the melting point of NaCl(s) is 801°C.
 - (i) Identify the type of bonding in each substance.
 - (ii) Account for the difference in the melting points of the substances.
 - (c) As shown in the table below, the first ionization energies of Si, P, and Cl show a trend.

Element	First Ionization Energy (KFmol ⁻¹)
Si	786
P	1,012
Cl	1,251

- (i) For each of the three elements, identify the quantum level (e.g., n = 1, n = 2, etc.) of the valence electrons in the atom.
- (ii) Explain the reasons for the trend in first ionization energies.
- (d) A certain element has two stable isotopes. The mass of one of the isotopes is 62.93 amu and the mass of the other isotope is 64.93 amu.
 - (i) Identify the element. Justify your answer.
 - (ii) Which isotope is more abundant? Justify your answer.

(a)	1 The intermolecular forces in NHz are dispersion forces, dipole-dipole forces, and hydrogen bonds. The intermolecular forces in NFz are dispersion forces
	dipole-dipole forces and hydrogen bonds
	The intermolecular forces in NF2 are dispersion forces
	and dipole dipole forces.

\cdot
ADDITIONAL PAGE FOR ANSWERING QUESTION 7.
ii Both substances contain dispersion forces and dispot - clips le
forces but NH3 contains hydrogen bonds. Those bonds are much
stronger than the disposion on dipole forces. Therefore they would begave more energy to break, and for NHz the boiling
point would have to be higher to overcome these forces. N/3
does not have such strong bonds -
b), i Both KCI and NaCI have ranic bonds.
ii. The compound NaClis more electronegative than KCI.
I The compared NaCl is more electronegative than KCl. Therefore the bonds in NaCl are more ionic and stronger. They would require more energy to local than those of KCl.
they would require more energy to loreal than those of NCI.
(c) i For all three element, n=3.
ii. Si has 4 valence electrons Phas 5, and Clhas 7. Chlome
is the closest to having eight electrons which not ld make it
completely stable. It is the most stable of all three elements listed, so it would require the most energy to remove an electron
Dilicon is the least stable element listed on it would require
the least energy to pemore an electron. Phasphanous is in between the other two, so its ionization energy should be like that as well
other two, so its ionization energy should be like that as well
(d); The element is Copper The two atomic masses a verage to
(d); The element is Copper. The two atomic masses a verage to about 63. The atomic mass of Coppers 63.55.
in The 62.93 isotope is more abundary. The mass of this
is the 62.93 isotope is more abundant. The mass of this isotope is closest to the average atomic mass of Copper 63.55. Therefore, it has the highest percentage.
63.33, reretore, it has the highest percentage.

BBBBBBBBBBBBB

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

- 8. The dissolving of $AgNO_3(s)$ in pure water is represented by the equation above.
 - (a) Is ΔG for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (b) Is ΔS for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (c) The solubility of AgNO₃(s) increases with increasing temperature.
 - (i) What is the sign of ΔH for the dissolving process? Justify your answer.
 - (ii) Is the answer you gave in part (a) consistent with your answers to parts (b) and (c) (i) ? Explain.

The compound NaI dissolves in pure water according to the equation NaI(s) \rightarrow Na⁺(aq) + I⁻(aq). Some of the information in the table of standard reduction potentials given below may be useful in answering the questions that follow.

Half-reaction	<i>E</i> ° (V)
$O_2(g) + 4 H^+ + 4 e^- \rightarrow 2 H_2O(l)$	1.23
$I_2(s) + 2e^- \rightarrow 2I^-$	0.53
$2 \text{ H}_2\text{O}(l) + 2 e^- \rightarrow \text{H}_2(g) + 2 \text{ OH}^-$	-0.83
$Na^+ + e^- \rightarrow Na(s)$	-2.71

- (d) An electric current is applied to a 1.0 M NaI solution.
 - (i) Write the balanced oxidation half-reaction for the reaction that takes place.
 - (ii) Write the balanced reduction half-reaction for the reaction that takes place.
 - (iii) Which reaction takes place at the anode, the oxidation reaction or the reduction reaction?
 - (iv) All electrolysis reactions have the same sign for ΔG° . Is the sign positive or negative? Justify your answer.

(a) DG for the dissolving of Ag NO3 (s) is negative because Ag NO3 (s) is very soluble and the dissolving process is spontaneous.

b) ΔS for the dissolving of AgNO3 is, is positive: since the two products which are AgIt and NO31- aqueous ions have more entropy then

$\mathbf{B} \quad \mathbf{B} \quad$

ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

the product which is a solid (Ag NO3 15,). As is positive since entropy increased.
the increase in temperature shift the equation to the right which means the forwards reaction must be endotherm. If the new forward reaction is endo thermic than all is positive.
II) The criswers are consistent. Since $\Delta G = \Delta H - T\Delta S$ by Even though ΔH is positive ΔG could still be a negative number because ΔS could be a more important factor than $\Delta B \Delta H$. As ΔG increases and this increase offsets the enthalpy term.
d). i) $2I^{-} \rightarrow I_{2} + 2e^{-}$ ii) $2H_{2}^{0}(e) + 2e^{-} \rightarrow H_{2}(g) + 20H^{-}$
iii) The oxidation reaction takes place at the anode.
iv) All electrolysis reactions have a positive as a because electric energy must be supplyied for the reaction to happen. It the reaction is non-spontaneous the thus ago is positive.

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

- 8. The dissolving of $AgNO_3(s)$ in pure water is represented by the equation above.
 - (a) Is ΔG for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (b) Is ΔS for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (c) The solubility of $AgNO_3(s)$ increases with increasing temperature.
 - (i) What is the sign of ΔH for the dissolving process? Justify your answer.
 - (ii) Is the answer you gave in part (a) consistent with your answers to parts (b) and (c) (i) ? Explain.

The compound NaI dissolves in pure water according to the equation $NaI(s) \rightarrow Na^+(aq) + I^-(aq)$. Some of the information in the table of standard reduction potentials given below may be useful in answering the questions that follow.

Half-reaction	<i>E</i> ° (V)
$O_2(g) + 4 H^+ + 4 e^- \rightarrow 2 H_2O(l)$	1.23
$I_2(s) + 2e^- \rightarrow 2I^-$	0.53
$2 \text{ H}_2\text{O}(l) + 2 e^- \rightarrow \text{H}_2(g) + 2 \text{ OH}^-$	-0.83
$Na^+ + e^- \rightarrow Na(s)$	-2.71

- (d) An electric current is applied to a 1.0 M NaI solution.
 - (i) Write the balanced oxidation half-reaction for the reaction that takes place.
 - (ii) Write the balanced reduction half-reaction for the reaction that takes place.
 - (iii) Which reaction takes place at the anode, the oxidation fraction or the reduction reaction?
 - (iv) All electrolysis reactions have the same sign for ΔG° . Is the sign positive or negative? Justify your answer.

(a).	16 F	vo	fre	dissolvi	ng of	An NOZI	s) is	negati	ve be	(alise it	f is
	a fa	Yor a	ble.	reaction	ر م) ر	Ay NO31	ds Cov	taining	No	2 are	
	VRVY	So	luble.								
(b)	. Д5	for	the	dissolv	ing of	AgNO-	(5) is	positiv	e b	e(ause	
	the	dis	or der	15	n (reas	AgNOz ed, as	it i	5 for	амч	dissol	ing
											1

ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

reactjon.	
(c). Att is positive because the breaking the bonds in A needs energy. My answer to part (a) is consistent with those to (b) and (c)(i), BG = At1+7DS and though DH ma be positive, the negative TDS term has a greater impact because when the temperature rises, the reaction becomes more favorable. Therefore, DG would still be negative.	<u> </u>
(d) oxidation reaction: 2I -> Iz 151 + 2e reduction reaction: Nat te -> Nacs The oxidation reaction takes place at the anode. All electrolysis reactions have a positive DG; DG:= -NFE and E is always negative for electrolysis reactions - Common Voltage must be apple for the cell to function.	ied

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

- 8. The dissolving of $AgNO_3(s)$ in pure water is represented by the equation above.
 - (a) Is ΔG for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (b) Is ΔS for the dissolving of AgNO₃(s) positive, negative, or zero? Justify your answer.
 - (c) The solubility of $AgNO_3(s)$ increases with increasing temperature.
 - (i) What is the sign of ΔH for the dissolving process? Justify your answer.
 - (ii) Is the answer you gave in part (a) consistent with your answers to parts (b) and (c) (i)? Explain.

The compound NaI dissolves in pure water according to the equation $NaI(s) \rightarrow Na^+(aq) + I^-(aq)$. Some of the information in the table of standard reduction potentials given below may be useful in answering the questions that follow.

Half-reaction	<i>E</i> ° (V)
$O_2(g) + 4 H^+ + 4 e^- \rightarrow 2 H_2O(l)$	1.23
$I_2(s) + 2 e^- \rightarrow 2 I^-$	0.53
$2 \text{ H}_2\text{O}(l) + 2 e^- \rightarrow \text{H}_2(g) + 2 \text{ OH}^-$	-0.83
$Na^+ + e^- \rightarrow Na(s)$	-2.71

- (d) An electric current is applied to a 1.0 M NaI solution.
 - (i) Write the balanced oxidation half-reaction for the reaction that takes place.
 - (ii) Write the balanced reduction half-reaction for the reaction that takes place.
 - (iii) Which reaction takes place at the anode, the oxidation reaction or the reduction reaction?
 - (iv) All electrolysis reactions have the same sign for ΔG° . Is the sign positive or negative? Justify your answer.

@ AG is regative NO3 is always soluble all Water because of	
that when placed in water it will spontaneously break its	
bonds with the silver.	
D as is positive because as the AgNO3 dissociates the randomre	-55
of the long' positions and collisions will increase.	•

ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

& i: when dissolving AH For AgNO3 will be + because the
3 molecule dissolves more with more heat therefore it must
be endothermic
ii: The answer in part a is consistant because when
At is positive * if AS is much greater in magnitude than
AH, AG can still be regative and the reaction can
Still be spontaneous - especially if the temperature
15 raised,
* according to the equation QG = QH - TQS
(d): Na -> Natte
li I+e→I-
iii the reduction half of the reaction takes place at the anode
Iv all electrolysis reactions would have a positive
Sign for DG because they all require energy to be
put into the system inorder to go tornard with
the reaction
,