

​

​ ​ ​ ​ ​ ​ ​

​ ​

​

​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​

​ ​ ​ ​

​ ​ ​

​ ​ ​

​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​

​ ​ ​ ​ ​

​ ​

Create Sample B 1 of 3

Create Task 2a-2d
2a.

I made QUIZlet 2.0, a word memorizer tool, using Python 3.6.2. This program’s purpose is to help users

memorize terms and their definitions more effectively. The program fulfills this purpose by first​ letting

users enter in term-definition pairs. The program then ​ lets the user study those pairs until they are ready

for a quiz. Then, the program quizzes the user about those terms, and finishes up by printing information

about how the user did on the quiz, as well as the terms the user messed up on. This video illustrates the

above features by showing how the program first asks the user to enter in terms and their definitions

and allows the user “study” until they are ready, then quizzes the user, then finally prints out how many

terms the user answered correctly as well as terms which the user messed up on.

2b.

An incremental process was when I drew a flowchart detailing the flow of the program, including how

the program has three functions collect_dict(), study(), quiz(), that collects term-definition-pairs,

helps user study, and quizzes the user, respectively, and a fourth function run_quiz() that calls the three

former functions in the correct order. Another incremental process incorporated into the code is a for

loop that prints blank lines until the counter reaches 100. An iterative process was when I decided to

improve the program by using the lower() method to make it non-case-sensitive for users. Both these

processes were done independently. A difficulty encountered was when my tester found that the

program always calculates the user’s quiz-scores 1-digit higher than it actually is. I resolved this by

assigning points_scored to 0. Another difficulty was encountered when my tester noticed that the

quiz feature was printed directly below the “study” feature and users taking the quiz can cheat off the

answers displayed in the study section. I resolved this by printing 300 blank lines between the “study”

and “quiz” portions. These 2 difficulties were resolved by collaborating with a classmate.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​

​ ​

Create Sample B 2 of 3

2c.

An algorithm in my program is a for-loop that includes 3 sets of if-else statements. The for-loop iterates

over each item in the dictionary and asks the user to enter the term which corresponds to a given

definition. The 1st set of if-else-statements functions by adding 1 each to user’s score and streak-point if

the user’s answer = key of the dictionary-item. Else, it resets streak to 0. This demonstrates use of logical

concepts since if-statements use Booleans. The 2nd set of if-else-statements determine which

motivational-message to print based on their streak-points. If the streak-point >= 2, it runs the

algorithm’s 3rd set of if-else-statements, which uses modulus—a mathematical concept—to determine

which motivational message to display by using modulus 2 to determine the parity of the streak-score.

Additionally, if streak-point < 2, the algorithm prints out a message that tells the user to try harder. All in

all, this entire algorithm helps to achieve intended purpose of the program by quizzing the user, and the

3 smaller algorithms (the if-else-statements) included within the algorithm determines the score and

streak-points of the user and uses that information to print adequate motivational messages. This entire

algorithm’s developed independently.

​ ​ ​ ​ ​ ​

​

​

​ ​ ​

​

​ ​

​ ​ ​

​ ​ ​ ​

​ ​ ​

​

​ ​

​ ​ ​

Create Sample B 3 of 3

2d.

An abstraction developed individually is quiz(), which is used in the function run_quiz(). quiz()

quizzes the user, records terms the user messes up on, calculates total points_scored and streak-points,

and gives the user motivational messages based on their streak-points. Example of using a mathematical

concept is using modulus-2 to determine the parity of the user’s streak-points. Example of a logical

concept is an if-else statement that determines if the user answered correctly. My function does this by

returning a Boolean value (True or False) which describes whether the user’s answer equals correct

answer, and using that value to determine whether or not to run add 1 each to points_scored and

streak-points. Having this abstraction helped manage the complexity of this program by one, improving

readability, and two, making debugging easier. Firstly, since all the code regarding the quiz is in a

function, running the quiz itself only requires quiz(). Second, this abstraction made debugging

significantly easier. An example of this is when I found out that the quiz was not functioning the way I

had expected it to, so I immediately started looking for errors in the quiz() function rather than

having to look through my entire program for the error.

	Create Task 2a-2d

