

Create Sample G 1 of 3

2a. The programming language that I used is Java. The purpose of my program is to be an
adaptable inventory management system that could work in almost any field. The program has
the capability to add items, edit items, display items, search through items, sell items, view
gross income, and delete items. The user’s information is stored in various text files, a save-like
idea. The main purpose of the program is to help businesses organize and inspect certain
inventory elements. By allowing user inputs to be saved and organized, businesses can easily
keep track of items and incomes. My video shows the use for the program, and displays some
of the functions in action. The video also shows the easy to use GUI and how it is used, and my
password/security code that I implemented into our project (at the beginning).

2b. A difficulty that I encountered while writing the PassMan class was the ability to save/store
the passwords in a specific place. I knew that I wanted to have the user create a password and
have that password be able to work the next time that the user wanted to use the program.
What I found is that in Java, I could create a text file into which I could save the user's
password. By doing this, I could write another function to check if the text file existed, and if so,
ask for the pre existing password. This sparked an opportunity to save all of the necessary
components of the project onto text files. This idea worked very well for me. Another difficulty
that I had was encoding passwords and security questions into the text file. As I was beginning
the project, I realized that it was a terrible idea to write passwords and security questions onto a
text file without encoding them, as they could easily be accessed. To solve this, I created a
encoding function to encode the password and the security question in the text file. These
problems were incorporated in an incremental and iterative way.

2c.

​​

​

​ ​​

​

Create Sample G 2 of 3

The algorithm’s purpose in our program is to encode the security question and password.
Because this information is saved on a text file and is private, an encode algorithm is necessary
to protect this valuable info. The algorithm simply takes the original message and changes it into
another encrypted message that is saved on the text file. It takes each individual character from
the original input (from the letters String) and changes it to the corresponding letter/symbol in
the shifted String. By doing this, the information saved in the text file gives no indication of the
true password or security question. The two algorithms that are involved in the main algorithm
are the encode algorithm and the decode algorithm. The decode algorithm works in the opposite
way that the encode algorithm works. It does this by shifting the characters in the text file back
to the original input from the user. It does this in the same was as the encode algorithm, but in
reverse. With the combination of these two algorithms, I can create a main algorithm that
implements both of these algorithms. For example, checking if the existing password is correct.

2d.

This abstraction was created so that if the text file p.txt exists, the program will automatically
begin by asking the user for their password instead of asking the user to create a new one. The
purpose of this abstraction is to save the inputs that the user put in the inventory manager if
they wish to exit the program. By saving the password, the inventory manager retains all of the
user's inputs. This saves the user time and tremendously helps with inventory management, as
it will save all of the inputs from the previous session. It helped manage the complexity of the

​ ​

​

Create Sample G 3 of 3

program by allowing a previous password to be used, rather than needing a new password
every time the program needed to be used. The abstraction begins by checking if the p.txt file
exists. If so, a new text file is created. Then the old password is brought in with a scanner. After
this, the user puts in their password. The if statement states that if the oldPass and the
readPass equal the same input, the program starts. If the password is incorrect, the reset
function is called.

	Create Sample G

