
​

​

Create Sample A 1 of 4

2a. Narration in video.

2b.

Being unfamiliar with Firebase’s structure, I encountered a problem

while programming when I tried to include a 3rd Firebase database. Upon

the addition of the component and the corresponding coding elements, my

app could no longer be packaged or loaded onto a device for testing. My app

would always crash while loading. Unable to find a clear syntax error, I

resolved the issue by debugging and deleting portions of the code until the

app would finally successfully load and then reprogramming the deleted

portions of code.

Another difficulty I encountered was transferring variables across

screens in order to access the correct user’s data. Opening a new screen in

App Inventor would clear the values of the variable on the device, which

would render them unusable on the next screen. I resolved this

independently by assembling the contents of each screen into its own

arrangement, and utilizing the .visible property of these arrangements to

make them appear and disappear, providing the illusion of multiple screens

and allowing the accessed variable values to be consistent across all

“screens”.

​

​

2c.

Create Sample A 2 of 4

As my program uses Firebase databases to store user data,

AccountDB.GotValue is an important algorithm as it handles all data

retrieved from the account database such as users and passwords. Because

Firebase data requests are handled asynchronously to the program, it is

necessary that when data is sent back from Firebase, the algorithm

examines the tag and values sent back in order to properly redirect the

program to either proceed with a login or create account procedure.

​ ​ ​

​ ​

​ ​ ​

Create Sample A 3 of 4

One of the integrated algorithms is the procedure called

loginProcedure (above). When called, the procedure loginProcedure will

login in the user and load up the user’s diary entries if the correct password

is entered. Otherwise, an error message will appear and the user will have to

try again.

The procedure createAccount shown above is another integrated

algorithm that helps create a user’s account and mark the designated

locations for the user’s data in Firebase given that they had provided a valid

password and an unique username. The integration of the two procedures

createAccount and loginProcedure helps the overall algorithm perform

and regulate the core functions of the login screen of creating accounts and

logging in.

​ ​ ​ ​

​ ​

2d.

Create Sample A 4 of 4

One abstraction I developed to manage the complexity of my code was

the procedure loadUserEntryData. loadUserEntryData helps populate a list

of user’s entries and is called multiple times throughout the program using

different (albeit only slightly) parameters. Implementing this abstraction

improves the readability of the code by reducing redundancy and the overall

line count. Instead of repeating the nine lines of code in every place, I would

only need to call the procedure loadUserEntryData. In addition, this

abstraction manages complexity as any future changes that need to be

made to loading user entry data can be done in a single place. Overall, this

abstraction was a helpful in managing redundancy, length of code,

editability, and overall complexity.

	Create Sample A

