2018

AP Calculus BC Scoring Guidelines

© 2018 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. Visit the College Board on the Web: www.collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org

AP[®] CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

(a)	$\int_0^{300} r(t) dt = 270$		$2: \begin{cases} 1: integral \\ 1: answer \end{cases}$
	According to the mode during the time interva	el, 270 people enter the line for the escalator l $0 \le t \le 300$.	
(b)	$20 + \int_0^{300} (r(t) - 0.7)$	$dt = 20 + \int_0^{300} r(t) dt - 0.7 \cdot 300 = 80$	2 : $\begin{cases} 1 : \text{ considers rate out} \\ 1 : \text{ answer} \end{cases}$
	According to the mode	el, 80 people are in line at time $t = 300$.	
(c)	Based on part (b), the	1 : answer	
	The first time <i>t</i> that th $300 + \frac{80}{0.7} = 414.286$	ere are no people in line is (or 414.285) seconds.	
(d) The total number of people in line at time t , $0 \le t \le 300$, is modeled by $20 + \int_0^t r(x) dx - 0.7t.$ $r(t) - 0.7 = 0 \implies t_1 = 33.013298, t_2 = 166.574719$			4: $\begin{cases} 1 : \text{considers } r(t) - 0.7 = 0 \\ 1 : \text{identifies } t = 33.013 \\ 1 : \text{answers} \\ 1 : \text{justification} \end{cases}$
	t	People in line for escalator	
	0	20	
	t_1	3.803	
	t_2	158.070	
	300	80	
The number of people in line is a minimum at time $t = 33.013$ seconds, when there are 4 people in line.			

AP[®] CALCULUS BC 2018 SCORING GUIDELINES

(a) $p'(25) = -1.179$ At a depth of 25 meters, the density of plankton cells is changing at a rate of -1.179 million cells per cubic meter per meter.	$2: \begin{cases} 1: answer \\ 1: meaning with units \end{cases}$
(b) $\int_{0}^{30} 3p(h) dh = 1675.414936$ There are 1675 million plankton cells in the column of water between $h = 0$ and $h = 30$ meters.	2 : $\begin{cases} 1 : \text{ integrand} \\ 1 : \text{ answer} \end{cases}$
(c) $\int_{30}^{K} 3f(h) dh$ represents the number of plankton cells, in millions, in the column of water from a depth of 30 meters to a depth of <i>K</i> meters. The number of plankton cells, in millions, in the entire column of water is given by $\int_{0}^{30} 3p(h) dh + \int_{30}^{K} 3f(h) dh$. Because $0 \le f(h) \le u(h)$ for all $h \ge 30$, $3\int_{30}^{K} f(h) dh \le 3\int_{30}^{K} u(h) dh \le 3\int_{30}^{\infty} u(h) dh = 3 \cdot 105 = 315$.	3 :
The total number of plankton cells in the column of water is bounded by $1675.415 + 315 = 1990.415 \le 2000$ million. (d) $\int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} dt = 757.455862$ The total distance traveled by the boat over the time interval $0 \le t \le 1$ is 757.456 (or 757.455) meters.	$2: \begin{cases} 1: integrand \\ 1: total distance \end{cases}$

AP[®] CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

Question 3

(a)
$$f(-5) = f(1) + \int_{1}^{-5} g(x) \, dx = f(1) - \int_{-5}^{1} g(x) \, dx$$

= $3 - \left(-9 - \frac{3}{2} + 1\right) = 3 - \left(-\frac{19}{2}\right) = \frac{25}{2}$

(b)
$$\int_{1}^{6} g(x) dx = \int_{1}^{3} g(x) dx + \int_{3}^{6} g(x) dx$$

= $\int_{1}^{3} 2 dx + \int_{3}^{6} 2(x-4)^{2} dx$
= $4 + \left[\frac{2}{3}(x-4)^{3}\right]_{x=3}^{x=6} = 4 + \frac{16}{3} - \left(-\frac{2}{3}\right) = 10$

(c) The graph of f is increasing and concave up on 0 < x < 1 and 4 < x < 6 because f'(x) = g(x) > 0 and f'(x) = g(x) is increasing on those intervals.

(d) The graph of f has a point of inflection at x = 4 because f'(x) = g(x) changes from decreasing to increasing at x = 4.

3 : $\begin{cases} 1 : \text{split at } x = 3 \\ 1 : \text{antiderivative of } 2(x - 4)^2 \\ 1 : \text{answer} \end{cases}$

2 : $\begin{cases} 1 : intervals \\ 1 : reason \end{cases}$

1 : integral

 $2: \begin{cases} 1 : answer \\ 1 : reason \end{cases}$

AP[®] CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

(a)
$$H'(6) \approx \frac{H(7) - H(5)}{7 - 5} = \frac{11 - 6}{2} = \frac{5}{2}$$

 $H'(6)$ is the rate at which the height of the tree is changing, in meters
per year, at time $t = 6$ years.
(b) $\frac{H(5) - H(3)}{5 - 3} = \frac{6 - 2}{2} = 2$
Because H is differentiable on $3 \le t \le 5$, H is continuous on $3 \le t \le 5$.
By the Mean Value Theorem, there exists a value c , $3 < c < 5$, such that
 $H'(c) = 2$.
(c) The average height of the tree over the time interval $2 \le t \le 10$ is given
by $\frac{1}{10 - 2} \int_{2}^{10} H(t) dt$.
 $\frac{1}{8} \int_{2}^{10} H(t) dt \approx \frac{1}{8} \left(\frac{1.5 + 2}{2} \cdot 1 + \frac{2 + 6}{2} \cdot 2 + \frac{6 + 11}{2} \cdot 2 + \frac{11 + 15}{2} \cdot 3\right)$
 $= \frac{1}{8} (65.75) = \frac{263}{32}$
The average height of the tree over the time interval $2 \le t \le 10$ is
 $\frac{263}{32}$ meters.
(d) $G(x) = 50 \Rightarrow x = 1$
 $\frac{d}{dt} (G(x)) = \frac{d}{dx} (G(x)) \cdot \frac{dx}{dt} = \frac{(1 + x)100 - 100x \cdot 1}{(1 + x)^2} \cdot \frac{dx}{dt} = \frac{100}{(1 + x)^2} \cdot \frac{dx}{dt}$
 $\frac{d}{dt} (G(x)) \Big|_{x=1} = \frac{100}{(1 + 1)^2} \cdot 0.03 = \frac{3}{4}$
According to the model, the rate of change of the height of the tree with
respect to time when the tree is 50 meters tall is $\frac{3}{4}$ meter per year.
(a) $H'(6) = \frac{H(7)}{2} = \frac{100}{2} \cdot \frac{100}{1 + 10} = \frac{3}{2}$
 $According to the model, the rate of some tant is $\frac{3}{4}$ meter per year.$

AP® CALCULUS BC 2018 SCORING GUIDELINES

Question 5

(a) Area =
$$\frac{1}{2} \int_{\pi/3}^{5\pi/3} (4^2 - (3 + 2\cos\theta)^2) d\theta$$

(b)
$$\frac{dr}{d\theta} = -2\sin\theta \Rightarrow \frac{dr}{d\theta}\Big|_{\theta=\pi/2} = -2$$

 $r\left(\frac{\pi}{2}\right) = 3 + 2\cos\left(\frac{\pi}{2}\right) = 3$
 $dv = dr$

$$y = r\sin\theta \Rightarrow \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$
$$x = r\cos\theta \Rightarrow \frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta$$
$$\frac{dy}{dx}\Big|_{\theta=\pi/2} = \frac{dy/d\theta}{dx/d\theta}\Big|_{\theta=\pi/2} = \frac{-2\sin\left(\frac{\pi}{2}\right) + 3\cos\left(\frac{\pi}{2}\right)}{-2\cos\left(\frac{\pi}{2}\right) - 3\sin\left(\frac{\pi}{2}\right)} = \frac{2}{3}$$

The slope of the line tangent to the graph of $r = 3 + 2\cos\theta$ at $\theta = \frac{\pi}{2}$ is $\frac{2}{3}$. -OR $y = r\sin\theta = (3 + 2\cos\theta)\sin\theta \Rightarrow \frac{dy}{d\theta} = 3\cos\theta + 2\cos^2\theta - 2\sin^2\theta$ $x = r\cos\theta = (3 + 2\cos\theta)\cos\theta \Rightarrow \frac{dx}{d\theta} = -3\sin\theta - 4\sin\theta\cos\theta$ $\frac{dy}{dx}\Big|_{\theta=\pi/2} = \frac{dy/d\theta}{dx/d\theta}\Big|_{\theta=\pi/2} = \frac{3\cos\left(\frac{\pi}{2}\right) + 2\cos^2\left(\frac{\pi}{2}\right) - 2\sin^2\left(\frac{\pi}{2}\right)}{-3\sin\left(\frac{\pi}{2}\right) - 4\sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{2}\right)} = \frac{2}{3}$

The slope of the line tangent to the graph of $r = 3 + 2\cos\theta$ at $\theta = \frac{\pi}{2}$ is $\frac{2}{3}$.

(c)
$$\frac{dr}{dt} = \frac{dr}{d\theta} \cdot \frac{d\theta}{dt} = -2\sin\theta \cdot \frac{d\theta}{dt} \Rightarrow \frac{d\theta}{dt} = \frac{dr}{dt} \cdot \frac{1}{-2\sin\theta}$$

$$\frac{d\theta}{dt}\Big|_{\theta=\pi/3} = 3 \cdot \frac{1}{-2\sin\left(\frac{\pi}{3}\right)} = \frac{3}{-\sqrt{3}} = -\sqrt{3} \text{ radians per second}$$

$$3: \begin{cases} 1: \frac{dr}{dt} = \frac{dr}{d\theta} \cdot \frac{d\theta}{dt} \\ 1: \frac{d\theta}{dt} = \frac{dr}{dt} \cdot \frac{1}{-2\sin\theta} \\ 1: \text{ answer with units} \end{cases}$$

3:
$$\begin{cases} 1 : \text{constant and limits} \\ 2 : \text{integrand} \end{cases}$$

3:
$$\begin{cases} 1 : \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta \\ \text{or } \frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \\ 1 : \frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} \\ 1 : \text{answer} \end{cases}$$

 $\frac{dr}{dt} \cdot \frac{1}{-2\sin\theta}$

© 2018 The College Board. Visit the College Board on the Web: www.collegeboard.org.

AP[®] CALCULUS BC 2018 SCORING GUIDELINES

(a) The first four nonzero terms are
$$\frac{x^2}{3} - \frac{x^3}{2 \cdot 3^2} + \frac{x^4}{3 \cdot 3^3} - \frac{x^5}{4 \cdot 3^4}$$
.
The general term is $(-1)^{p+1} \frac{x^{n+1}}{n \cdot 3^{n+1}}$.
(b) $\lim_{n \to \infty} \left| \frac{\left(-1\right)^{n+2} x^{n+2}}{\left(-1\right)^{p+1} x^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{-x}{n} \cdot \frac{n}{(n+1)} \right| = \left| \frac{x}{3} \right|$
 $\left| \frac{x}{3} \right| < 1$ for $|x| < 3$
Therefore, the radius of convergence of the Maclaurin series for f is 3.
 $-OR -$
The radius of convergence of the Maclaurin series for $\ln(1 + x)$ is 1,
so the series for $f(x) = x \ln\left(1 + \frac{x}{3}\right)$ converges absolutely for $\left| \frac{x}{3} \right| < 1$.
 $\left| \frac{x}{3} \right| < 1 \Rightarrow |x| < 3$
Therefore, the radius of convergence of the Maclaurin series for f is 3.
When $x = -3$, the series is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-3)^{n+1}}{n \cdot 3^n} = \sum_{n=1}^{\infty} \frac{2}{n}$, which
diverges by comparison to the harmonic series.
When $x = 3$, the series is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-3)^{n+1}}{n \cdot 3^n} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{3}{n}$, which
convergence of the Maclaurin series for f is $-3 < x \le 3$.
(c) By the alternating series error bound, an upper bound for
 $|P_4(2) - f(2)| < \left| -\frac{2^5}{4 \cdot 3^4} \right| = \frac{8}{81}$
 $\oplus 2018$ The College Bard.