2018

AP Calculus AB Scoring Guidelines

© 2018 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. Visit the College Board on the Web: www.collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org

AP[®] CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

(a)	$\int_{0}^{300} r(t) dt = 270$ According to the model, 270 people enter the line for the escalator during the time interval $0 \le t \le 300$		$2: \begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(b)	$20 + \int_0^{300} (r(t) - 0.7) dt$ According to the mode	$dt = 20 + \int_0^{300} r(t) dt - 0.7 \cdot 300 = 80$ I, 80 people are in line at time $t = 300$.	$2: \begin{cases} 1 : \text{considers rate out} \\ 1 : \text{answer} \end{cases}$
(c)	Based on part (b), the number of people in line at time $t = 300$ is 80.		1 : answer
	The first time <i>t</i> that the $300 + \frac{80}{0.7} = 414.286$	ere are no people in line is (or 414.285) seconds.	
(d)	The total number of people in line at time t , $0 \le t \le 300$, is modeled by $20 + \int_0^t r(x) dx - 0.7t$. $r(t) - 0.7 = 0 \implies t_1 = 33.013298, t_2 = 166.574719$		4: $\begin{cases} 1 : \text{considers } r(t) - 0.7 = 0\\ 1 : \text{identifies } t = 33.013\\ 1 : \text{answers}\\ 1 : \text{justification} \end{cases}$
	t	People in line for escalator	
	0	20	
	t_1	3.803	
	t_2	158.070	
	300	80	
	The number of people when there are 4 people	in line is a minimum at time $t = 33.013$ seconds, e in line.	

AP[®] CALCULUS AB 2018 SCORING GUIDELINES

(a)
$$v'(3) = -2.118$$

The acceleration of the particle at time $t = 3$ is -2.118 .
(b) $x(3) = x(0) + \int_0^3 v(t) dt = -5 + \int_0^3 v(t) dt = -1.760213$
The position of the particle at time $t = 3$ is -1.760 .
(c) $\int_0^{3.5} v(t) dt = 2.844$ (or 2.843)
 $\int_0^{3.5} |v(t)| dt = 3.737$
The integral $\int_0^{3.5} v(t) dt$ is the displacement of the particle over
the time interval $0 \le t \le 3.5$.
The integral $\int_0^{3.5} |v(t)| dt$ is the total distance traveled by the
particle over the time interval $0 \le t \le 3.5$.
(d) $v(t) = x_2'(t)$
 $v(t) = 2t - 1 \Rightarrow t = 1.57054$
The two particles are moving with the same velocity at time
 $t = 1.571$ (or 1.570).
(a) $v'(t) = x_2'(t)$
 $v(t) = 2t - 1 \Rightarrow t = 1.57054$
The two particles are moving with the same velocity at time
 $t = 1.571$ (or 1.570).

AP[®] CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

Question 3

(a)
$$f(-5) = f(1) + \int_{1}^{-5} g(x) \, dx = f(1) - \int_{-5}^{1} g(x) \, dx$$

= $3 - \left(-9 - \frac{3}{2} + 1\right) = 3 - \left(-\frac{19}{2}\right) = \frac{25}{2}$

(b)
$$\int_{1}^{6} g(x) dx = \int_{1}^{3} g(x) dx + \int_{3}^{6} g(x) dx$$

= $\int_{1}^{3} 2 dx + \int_{3}^{6} 2(x-4)^{2} dx$
= $4 + \left[\frac{2}{3}(x-4)^{3}\right]_{x=3}^{x=6} = 4 + \frac{16}{3} - \left(-\frac{2}{3}\right) = 10$

(c) The graph of f is increasing and concave up on 0 < x < 1 and 4 < x < 6 because f'(x) = g(x) > 0 and f'(x) = g(x) is increasing on those intervals.

(d) The graph of f has a point of inflection at x = 4 because f'(x) = g(x) changes from decreasing to increasing at x = 4.

ſ	1 - split at $x = 2$
3:	1 : split at $x = 3$ 1 : antiderivative of $2(x - 4)^2$
	1 : answer

 $2: \begin{cases} 1 : intervals \\ 1 : reason \end{cases}$

(1:integral) 1:answer

2:

 $2: \begin{cases} 1 : answer \\ 1 : reason \end{cases}$

AP[®] CALCULUS AB/CALCULUS BC 2018 SCORING GUIDELINES

(a)
$$H'(6) \approx \frac{H(7) - H(5)}{7 - 5} = \frac{11 - 6}{2} = \frac{5}{2}$$

 $H'(6)$ is the rate at which the height of the tree is changing, in meters
per year, at time $t = 6$ years.
(b) $\frac{H(5) - H(3)}{5 - 3} = \frac{6 - 2}{2} = 2$
Because H is differentiable on $3 \le t \le 5$. H is continuous on $3 \le t \le 5$.
By the Mean Value Theorem, there exists a value $c, 3 < c < 5$, such that
 $H'(c) = 2$.
(c) The average height of the tree over the time interval $2 \le t \le 10$ is given
by $\frac{1}{10 - 2} \int_{2}^{10} H(t) dt$.
 $\frac{1}{8} \int_{2}^{10} H(t) dt \approx \frac{1}{8} \left(\frac{1.5 + 2}{2} \cdot 1 + \frac{2 + 6}{2} \cdot 2 + \frac{6 + 11}{2} \cdot 2 + \frac{11 + 15}{2} \cdot 3\right)$
 $= \frac{1}{8} (65.75) = \frac{263}{32}$
The average height of the tree over the time interval $2 \le t \le 10$ is
 $\frac{263}{32}$ meters.
(d) $G(x) = 50 \Rightarrow x = 1$
 $\frac{d}{dt} (G(x)) = \frac{d}{dx} (G(x)) \cdot \frac{dx}{dt} = \frac{(1 + x)100 - 100x \cdot 1}{(1 + x)^2} \cdot \frac{dx}{dt} = \frac{100}{(1 + x)^2} \cdot \frac{dx}{dt}$
 $\frac{d}{dt} (G(x)) \Big|_{x=1} = \frac{100}{(1 + 1)^2} \cdot 0.03 = \frac{3}{4}$
According to the model, the rate of change of the height of the tree with
respect to time when the tree is 50 meters tall is $\frac{3}{4}$ meter per year.
(a) $H'(6) = \frac{H'(5)}{2} = \frac{100}{(1 + 1)^2} + \frac{100}{2} = \frac{3}{4}$
 $According to the model, the rate of solutions tall is $\frac{3}{4}$ meter per year.$

AP[®] CALCULUS AB 2018 SCORING GUIDELINES

Question 5

Τ

(a)	The average rate of change of f on the interval $0 \le x \le \pi$ is $\frac{f(\pi) - f(0)}{\pi - 0} = \frac{-e^{\pi} - 1}{\pi}.$	1 : answer
(b)	$f'(x) = e^x \cos x - e^x \sin x$ $f'\left(\frac{3\pi}{2}\right) = e^{3\pi/2} \cos\left(\frac{3\pi}{2}\right) - e^{3\pi/2} \sin\left(\frac{3\pi}{2}\right) = e^{3\pi/2}$	$2: \begin{cases} 1: f'(x) \\ 1: \text{slope} \end{cases}$
	The slope of the line tangent to the graph of <i>f</i> at $x = \frac{3\pi}{2}$ is $e^{3\pi/2}$.	
(c)	$f'(x) = 0 \implies \cos x - \sin x = 0 \implies x = \frac{\pi}{4}, x = \frac{5\pi}{4}$	$\begin{cases} 1 : \text{sets } f'(x) = 0 \\ 1 : \text{identifies } r = \frac{\pi}{2}, r = \frac{5\pi}{2} \end{cases}$
	$x \qquad f(x)$	$3: \begin{cases} 1 \text{ indentified } a \\ as candidates \end{cases}$
	0 1	1 : answer with justification
	$\frac{\pi}{4} \qquad \qquad \frac{1}{\sqrt{2}}e^{\pi/4}$	
	$\frac{5\pi}{4} \qquad \qquad -\frac{1}{\sqrt{2}}e^{5\pi/4}$	
	2π $e^{2\pi}$	
	The absolute minimum value of f on $0 \le x \le 2\pi$ is $-\frac{1}{\sqrt{2}}e^{5\pi/4}$.	
(d)	$\lim_{x \to \pi/2} f(x) = 0$	1 : g is continuous at $x = \frac{\pi}{2}$
	Because g is differentiable, g is continuous.	3 : { and limits equal 0
	$\lim_{x \to \pi/2} g(x) = g\left(\frac{\pi}{2}\right) = 0$	1 : answer
	By L'Hospital's Rule, $\lim_{x \to \pi/2} \frac{f(x)}{g(x)} = \lim_{x \to \pi/2} \frac{f'(x)}{g'(x)} = \frac{-e^{\pi/2}}{2}.$	Note: max 1/3 [1-0-0] if no limit notation attached to a ratio of derivatives

AP[®] CALCULUS AB 2018 SCORING GUIDELINES

