2017

AP Calculus BC Scoring Guidelines

© 2017 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. Visit the College Board on the Web: www.collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org

AP® CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

		1 : units in parts (a), (c), and (d)
(a)	Volume = $\int_0^{10} A(h) dh$ $\approx (2 - 0) \cdot A(0) + (5 - 2) \cdot A(2) + (10 - 5) \cdot A(5)$ = 2 \cdot 50.3 + 3 \cdot 14.4 + 5 \cdot 6.5 = 176.3 cubic feet	2 : $\begin{cases} 1 : \text{left Riemann sum} \\ 1 : \text{approximation} \end{cases}$
(b)	The approximation in part (a) is an overestimate because a left Riemann sum is used and A is decreasing.	1 : overestimate with reason
(c)	$\int_{0}^{10} f(h) dh = 101.325338$ The volume is 101.325 cubic feet.	2 : $\begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(d)	Using the model, $V(h) = \int_0^h f(x) dx$. $\frac{dV}{dt}\Big _{h=5} = \left[\frac{dV}{dh} \cdot \frac{dh}{dt}\right]_{h=5}$ $= \left[f(h) \cdot \frac{dh}{dt}\right]_{h=5}$ $= f(5) \cdot 0.26 = 1.694419$ When $h = 5$, the volume of water is changing at a rate of	$3: \begin{cases} 2: \frac{dV}{dt} \\ 1: \text{ answer} \end{cases}$
	1.694 cubic feet per minute.	

AP[®] CALCULUS BC 2017 SCORING GUIDELINES

(a)	$\frac{1}{2} \int_0^{\pi/2} (f(\theta))^2 d\theta = 0.648414$ The area of <i>R</i> is 0.648.	2 : $\begin{cases} 1 : integral \\ 1 : answer \end{cases}$
(b)	$\int_0^k \left((g(\theta))^2 - (f(\theta))^2 \right) d\theta = \frac{1}{2} \int_0^{\pi/2} \left((g(\theta))^2 - (f(\theta))^2 \right) d\theta$ - OR - $\int_0^k \left((g(\theta))^2 - (f(\theta))^2 \right) d\theta = \int_k^{\pi/2} \left((g(\theta))^2 - (f(\theta))^2 \right) d\theta$	2 :
(c)	$w(\theta) = g(\theta) - f(\theta)$ $w_A = \frac{\int_0^{\pi/2} w(\theta) d\theta}{\frac{\pi}{2} - 0} = 0.485446$	$3: \begin{cases} 1: w(\theta) \\ 1: \text{ integral} \\ 1: \text{ average value} \end{cases}$
	The average value of $w(\theta)$ on the interval $\left[0, \frac{\pi}{2}\right]$ is 0.485.	
(d)	$w(\theta) = w_A \text{ for } 0 \le \theta \le \frac{\pi}{2} \implies \theta = 0.517688$ $w(\theta) = w_A \text{ at } \theta = 0.518 \text{ (or } 0.517\text{)}.$ $w'(0.518) < 0 \implies w(\theta) \text{ is decreasing at } \theta = 0.518.$	$2: \begin{cases} 1 : \text{solves } w(\theta) = w_A \\ 1 : \text{answer with reason} \end{cases}$

AP[®] CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 3

(a) $f(-6) = f(-2) + \int_{-2}^{-6} f'(x) \, dx = 7 - \int_{-6}^{-2} f'(x) \, dx = 7 - 4 = 3$ 3 : $\begin{cases} 1 : \text{ uses initial condition} \\ 1 : f(-6) \\ 1 : f(5) \end{cases}$ $f(5) = f(-2) + \int_{-2}^{5} f'(x) \, dx = 7 - 2\pi + 3 = 10 - 2\pi$ (b) f'(x) > 0 on the intervals [-6, -2) and (2, 5). 2 : answer with justification Therefore, f is increasing on the intervals [-6, -2] and [2, 5]. (c) The absolute minimum will occur at a critical point where f'(x) = 02 : $\begin{cases} 1 : \text{considers } x = 2 \\ 1 : \text{answer with justification} \end{cases}$ or at an endpoint. $f'(x) = 0 \implies x = -2, x = 2$ The absolute minimum value is $f(2) = 7 - 2\pi$. (d) $f''(-5) = \frac{2-0}{-6-(-2)} = -\frac{1}{2}$ $2: \begin{cases} 1: f''(-5) \\ 1: f''(3) \text{ does not exist,} \\ \text{with explanation} \end{cases}$ $\lim_{x \to 3^{-}} \frac{f'(x) - f'(3)}{x - 3} = 2 \text{ and } \lim_{x \to 3^{+}} \frac{f'(x) - f'(3)}{x - 3} = -1$ f''(3) does not exist because $\lim_{x \to 3^{-}} \frac{f'(x) - f'(3)}{x - 3} \neq \lim_{x \to 3^{+}} \frac{f'(x) - f'(3)}{x - 3}.$

AP[®] CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

(a) $H'(0) = -\frac{1}{4}(91 - 27) = -16$ H(0) = 91 An equation for the tangent line is $y = 91 - 16t$.	3 :
The internal temperature of the potato at time $t = 3$ minutes is approximately $91 - 16 \cdot 3 = 43$ degrees Celsius.	
(b) $\frac{d^2H}{dt^2} = -\frac{1}{4}\frac{dH}{dt} = \left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)(H-27) = \frac{1}{16}(H-27)$ $H > 27 \text{ for } t > 0 \implies \frac{d^2H}{dt^2} = \frac{1}{16}(H-27) > 0 \text{ for } t > 0$ Therefore, the graph of H is concave up for $t > 0$. Thus, the answer in part (a) is an underestimate.	1 : underestimate with reason
(c) $\frac{dG}{(G-27)^{2/3}} = -dt$ $\int \frac{dG}{(G-27)^{2/3}} = \int (-1) dt$ $3(G-27)^{1/3} = -t + C$ $3(91-27)^{1/3} = 0 + C \Rightarrow C = 12$ $3(G-27)^{1/3} = 12 - t$ $G(t) = 27 + \left(\frac{12-t}{3}\right)^3$ for $0 \le t < 10$ The internal temperature of the potato at time $t = 3$ minutes is $27 + \left(\frac{12-3}{3}\right)^3 = 54$ degrees Celsius.	$5: \begin{cases} 1: \text{separation of variables} \\ 1: \text{antiderivatives} \\ 1: \text{constant of integration and} \\ \text{uses initial condition} \\ 1: \text{equation involving } G \text{ and } t \\ 1: G(t) \text{ and } G(3) \end{cases}$ Note: max 2/5 [1-1-0-0-0] if no constant of integration Note: 0/5 if no separation of variables

AP[®] CALCULUS BC 2017 SCORING GUIDELINES

(a) $f'(x) = \frac{-3(4x-7)}{(2x^2 - 7x + 5)^2}$ $f'(3) = \frac{(-3)(5)}{(18 - 21 + 5)^2} = -\frac{15}{4}$	2 : <i>f</i> ′(3)
(b) $f'(x) = \frac{-3(4x-7)}{(2x^2 - 7x + 5)^2} = 0 \implies x = \frac{7}{4}$ The only critical point in the interval $1 < x < 2.5$ has x-coordinate $\frac{7}{4}$. f' changes sign from positive to negative at $x = \frac{7}{4}$. Therefore, f has a relative maximum at $x = \frac{7}{4}$.	2 : $\begin{cases} 1 : x \text{-coordinate} \\ 1 : \text{relative maximum} \\ \text{with justification} \end{cases}$
(c) $\int_{5}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{5}^{b} \frac{3}{2x^{2} - 7x + 5} dx = \lim_{b \to \infty} \int_{5}^{b} \left(\frac{2}{2x - 5} - \frac{1}{x - 1}\right) dx$ $= \lim_{b \to \infty} \left[\ln (2x - 5) - \ln (x - 1) \right]_{5}^{b} = \lim_{b \to \infty} \left[\ln \left(\frac{2x - 5}{x - 1}\right) \right]_{5}^{b}$ $= \lim_{b \to \infty} \left[\ln \left(\frac{2b - 5}{b - 1}\right) - \ln \left(\frac{5}{4}\right) \right] = \ln 2 - \ln \left(\frac{5}{4}\right) = \ln \left(\frac{8}{5}\right)$	3 :
(d) f is continuous, positive, and decreasing on $[5, \infty)$.	2 : answer with conditions
The series converges by the integral test since $\int_{5}^{\infty} \frac{3}{2x^2 - 7x + 5} dx$ converges. — OR —	
$\frac{3}{2n^2 - 7n + 5} > 0$ and $\frac{1}{n^2} > 0$ for $n \ge 5$.	
Since $\lim_{n \to \infty} \frac{\frac{3}{2n^2 - 7n + 5}}{\frac{1}{n^2}} = \frac{3}{2}$ and the series $\sum_{n=5}^{\infty} \frac{1}{n^2}$ converges,	
the series $\sum_{n=5}^{\infty} \frac{3}{2n^2 - 7n + 5}$ converges by the limit comparison test.	

AP[®] CALCULUS BC 2017 SCORING GUIDELINES

(a)	f(0) = 0 f'(0) = 1 f''(0) = -1(1) = -1 f'''(0) = -2(-1) = 2 $f^{(4)}(0) = -3(2) = -6$	3: $\begin{cases} 1: f''(0), f'''(0), \text{ and } f^{(4)}(0) \\ 1: \text{ verify terms} \\ 1: \text{ general term} \end{cases}$
	The first four nonzero terms are $0 + 1x + \frac{-1}{2!}x^2 + \frac{2}{3!}x^3 + \frac{-6}{4!}x^4 = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}.$	
	The general term is $\frac{(-1)^{n+1}x^n}{n}$.	
(b)	For $x = 1$, the Maclaurin series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.	2 : converges conditionally with reason
	The series does not converge absolutely because the harmonic series diverges.	
	The series alternates with terms that decrease in magnitude to 0, and therefore the series converges conditionally.	
(c)	$\int_0^x f(t) dt = \int_0^x \left(t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \dots + \frac{(-1)^{n+1}t^n}{n} + \dots \right) dt$ $= \left[\frac{t^2}{2} - \frac{t^3}{3 \cdot 2} + \frac{t^4}{4 \cdot 3} - \frac{t^5}{5 \cdot 4} + \dots + \frac{(-1)^{n+1}t^{n+1}}{(n+1)n} + \dots \right]_{l=0}^{t=x}$ $= \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{12} - \frac{x^5}{20} + \dots + \frac{(-1)^{n+1}x^{n+1}}{(n+1)n} + \dots$	3 :
(d)	The terms alternate in sign and decrease in magnitude to 0. By the alternating series error bound, the error $\left P_4\left(\frac{1}{2}\right) - g\left(\frac{1}{2}\right)\right $ is bounded by the magnitude of the first unused term, $\left -\frac{(1/2)^5}{20}\right $. Thus, $\left P_4\left(\frac{1}{2}\right) - g\left(\frac{1}{2}\right)\right \le \left -\frac{(1/2)^5}{20}\right = \frac{1}{32 \cdot 20} < \frac{1}{500}$.	1 : error bound