AP Calculus BC Scoring Guidelines

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 1

(a) Volume $=\int_{0}^{10} A(h) d h$

$$
\begin{aligned}
& \approx(2-0) \cdot A(0)+(5-2) \cdot A(2)+(10-5) \cdot A(5) \\
& =2 \cdot 50.3+3 \cdot 14.4+5 \cdot 6.5 \\
& =176.3 \text { cubic feet }
\end{aligned}
$$

(b) The approximation in part (a) is an overestimate because a left Riemann sum is used and A is decreasing.
(c) $\int_{0}^{10} f(h) d h=101.325338$

The volume is 101.325 cubic feet.
(d) Using the model, $V(h)=\int_{0}^{h} f(x) d x$.

$$
\begin{aligned}
\left.\frac{d V}{d t}\right|_{h=5} & =\left[\frac{d V}{d h} \cdot \frac{d h}{d t}\right]_{h=5} \\
& =\left[f(h) \cdot \frac{d h}{d t}\right]_{h=5} \\
& =f(5) \cdot 0.26=1.694419
\end{aligned}
$$

When $h=5$, the volume of water is changing at a rate of 1.694 cubic feet per minute.

AP ${ }^{\circledR}$ CALCULUS BC 2017 SCORING GUIDELINES

Question 2

(a) $\frac{1}{2} \int_{0}^{\pi / 2}(f(\theta))^{2} d \theta=0.648414$

The area of R is 0.648 .
(b) $\int_{0}^{k}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta=\frac{1}{2} \int_{0}^{\pi / 2}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta$

- OR -
$\int_{0}^{k}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta=\int_{k}^{\pi / 2}\left((g(\theta))^{2}-(f(\theta))^{2}\right) d \theta$
(c) $w(\theta)=g(\theta)-f(\theta)$
$w_{A}=\frac{\int_{0}^{\pi / 2} w(\theta) d \theta}{\frac{\pi}{2}-0}=0.485446$
The average value of $w(\theta)$ on the interval $\left[0, \frac{\pi}{2}\right]$ is 0.485 .
(d) $w(\theta)=w_{A}$ for $0 \leq \theta \leq \frac{\pi}{2} \Rightarrow \theta=0.517688$
$w(\theta)=w_{A}$ at $\theta=0.518($ or 0.517$)$.
$w^{\prime}(0.518)<0 \Rightarrow w(\theta)$ is decreasing at $\theta=0.518$.

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 3

(a) $f(-6)=f(-2)+\int_{-2}^{-6} f^{\prime}(x) d x=7-\int_{-6}^{-2} f^{\prime}(x) d x=7-4=3$ $f(5)=f(-2)+\int_{-2}^{5} f^{\prime}(x) d x=7-2 \pi+3=10-2 \pi$
(b) $f^{\prime}(x)>0$ on the intervals $[-6,-2)$ and $(2,5)$.

Therefore, f is increasing on the intervals $[-6,-2]$ and $[2,5]$.
(c) The absolute minimum will occur at a critical point where $f^{\prime}(x)=0$ or at an endpoint.
$f^{\prime}(x)=0 \Rightarrow x=-2, x=2$

x	$f(x)$
-6	3
-2	7
2	$7-2 \pi$
5	$10-2 \pi$

The absolute minimum value is $f(2)=7-2 \pi$.
(d) $f^{\prime \prime}(-5)=\frac{2-0}{-6-(-2)}=-\frac{1}{2}$
$\lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}=2$ and $\lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}=-1$
$f^{\prime \prime}(3)$ does not exist because
$\lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3} \neq \lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}$.

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 4

(a) $H^{\prime}(0)=-\frac{1}{4}(91-27)=-16$
$H(0)=91$
An equation for the tangent line is $y=91-16 t$.
The internal temperature of the potato at time $t=3$ minutes is approximately $91-16 \cdot 3=43$ degrees Celsius.
(b) $\frac{d^{2} H}{d t^{2}}=-\frac{1}{4} \frac{d H}{d t}=\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)(H-27)=\frac{1}{16}(H-27)$
$H>27$ for $t>0 \Rightarrow \frac{d^{2} H}{d t^{2}}=\frac{1}{16}(H-27)>0$ for $t>0$
Therefore, the graph of H is concave up for $t>0$. Thus, the answer in part (a) is an underestimate.
(c) $\frac{d G}{(G-27)^{2 / 3}}=-d t$
$\int \frac{d G}{(G-27)^{2 / 3}}=\int(-1) d t$
$3(G-27)^{1 / 3}=-t+C$
$3(91-27)^{1 / 3}=0+C \Rightarrow C=12$
$3(G-27)^{1 / 3}=12-t$
$G(t)=27+\left(\frac{12-t}{3}\right)^{3}$ for $0 \leq t<10$
The internal temperature of the potato at time $t=3$ minutes is $27+\left(\frac{12-3}{3}\right)^{3}=54$ degrees Celsius.
$3:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { tangent line } \\ 1: \text { approximation }\end{array}\right.$

1 : underestimate with reason

5 :
(1 : separation of variables
1 : antiderivatives
1 : constant of integration and uses initial condition
1 : equation involving G and t
$1: G(t)$ and $G(3)$
Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration

Note: $0 / 5$ if no separation of variables

AP ${ }^{\circledR}$ CALCULUS BC 2017 SCORING GUIDELINES

Question 5

(a) $f^{\prime}(x)=\frac{-3(4 x-7)}{\left(2 x^{2}-7 x+5\right)^{2}}$
$2: f^{\prime}(3)$
$f^{\prime}(3)=\frac{(-3)(5)}{(18-21+5)^{2}}=-\frac{15}{4}$
(b) $f^{\prime}(x)=\frac{-3(4 x-7)}{\left(2 x^{2}-7 x+5\right)^{2}}=0 \Rightarrow x=\frac{7}{4}$

The only critical point in the interval $1<x<2.5$ has x-coordinate $\frac{7}{4}$. f^{\prime} changes sign from positive to negative at $x=\frac{7}{4}$.
Therefore, f has a relative maximum at $x=\frac{7}{4}$.
(c) $\int_{5}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{5}^{b} \frac{3}{2 x^{2}-7 x+5} d x=\lim _{b \rightarrow \infty} \int_{5}^{b}\left(\frac{2}{2 x-5}-\frac{1}{x-1}\right) d x$

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty}[\ln (2 x-5)-\ln (x-1)]_{5}^{b}=\lim _{b \rightarrow \infty}\left[\ln \left(\frac{2 x-5}{x-1}\right)\right]_{5}^{b} \\
& =\lim _{b \rightarrow \infty}\left[\ln \left(\frac{2 b-5}{b-1}\right)-\ln \left(\frac{5}{4}\right)\right]=\ln 2-\ln \left(\frac{5}{4}\right)=\ln \left(\frac{8}{5}\right)
\end{aligned}
$$

(d) f is continuous, positive, and decreasing on $[5, \infty)$.

2 : answer with conditions
The series converges by the integral test since $\int_{5}^{\infty} \frac{3}{2 x^{2}-7 x+5} d x$ converges.

- OR -
$\frac{3}{2 n^{2}-7 n+5}>0$ and $\frac{1}{n^{2}}>0$ for $n \geq 5$.
Since $\lim _{n \rightarrow \infty} \frac{\frac{3}{2 n^{2}-7 n+5}}{\frac{1}{n^{2}}}=\frac{3}{2}$ and the series $\sum_{n=5}^{\infty} \frac{1}{n^{2}}$ converges,
the series $\sum_{n=5}^{\infty} \frac{3}{2 n^{2}-7 n+5}$ converges by the limit comparison test.

AP ${ }^{\circledR}$ CALCULUS BC 2017 SCORING GUIDELINES

Question 6

(a) $f(0)=0$
$f^{\prime}(0)=1$
$f^{\prime \prime}(0)=-1(1)=-1$
$f^{\prime \prime \prime}(0)=-2(-1)=2$
$f^{(4)}(0)=-3(2)=-6$
The first four nonzero terms are
$0+1 x+\frac{-1}{2!} x^{2}+\frac{2}{3!} x^{3}+\frac{-6}{4!} x^{4}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$.
The general term is $\frac{(-1)^{n+1} x^{n}}{n}$.
(b) For $x=1$, the Maclaurin series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

The series does not converge absolutely because the harmonic series diverges.

The series alternates with terms that decrease in magnitude to 0 , and therefore the series converges conditionally.
(c) $\int_{0}^{x} f(t) d t=\int_{0}^{x}\left(t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\cdots+\frac{(-1)^{n+1} t^{n}}{n}+\cdots\right) d t$

$$
\begin{aligned}
& =\left[\frac{t^{2}}{2}-\frac{t^{3}}{3 \cdot 2}+\frac{t^{4}}{4 \cdot 3}-\frac{t^{5}}{5 \cdot 4}+\cdots+\frac{(-1)^{n+1} t^{n+1}}{(n+1) n}+\cdots\right]_{t=0}^{t=x} \\
& =\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{20}+\cdots+\frac{(-1)^{n+1} x^{n+1}}{(n+1) n}+\cdots
\end{aligned}
$$

(d) The terms alternate in sign and decrease in magnitude to 0 . By the alternating series error bound, the error $\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right|$ is bounded by the magnitude of the first unused term, $\left|-\frac{(1 / 2)^{5}}{20}\right|$.
Thus, $\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right| \leq\left|-\frac{(1 / 2)^{5}}{20}\right|=\frac{1}{32 \cdot 20}<\frac{1}{500}$.
$3:\left\{\begin{array}{l}1: f^{\prime \prime}(0), f^{\prime \prime \prime}(0), \text { and } f^{(4)}(0) \\ 1: \text { verify terms } \\ 1: \text { general term }\end{array}\right.$

2 : converges conditionally with reason

\(3:\left\{\begin{array}{l}1: two terms
1: remaining terms
1: general term\end{array}\right.\)

1 : error bound

